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Abstract Insights from causal manipulations of brain activity depend on targeting the spatial

and temporal scales most relevant for behavior. Using a sensitive perceptual decision task in

monkeys, we examined the effects of rapid, reversible inactivation on a spatial scale previously

achieved only with electrical microstimulation. Inactivating groups of similarly tuned neurons in area

MT produced systematic effects on choice and confidence. Behavioral effects were attenuated over

the course of each session, suggesting compensatory adjustments in the downstream readout of

MT over tens of minutes. Compensation also occurred on a sub-second time scale: behavior was

largely unaffected when the visual stimulus (and concurrent suppression) lasted longer than 350 ms.

These trends were similar for choice and confidence, consistent with the idea of a common

mechanism underlying both measures. The findings demonstrate the utility of hyperpolarizing

opsins for linking neural population activity at fine spatial and temporal scales to cognitive

functions in primates.

DOI: https://doi.org/10.7554/eLife.36523.001

Introduction
To understand how neural activity gives rise to behavior, a powerful approach is to manipulate the

activity of groups of neurons defined by particular functional or anatomical properties in the context

of a suitable behavioral task. This strategy has grown in popularity over recent years with the advent

of sophisticated tools for manipulating neural circuit function. However, recent perspectives have

cautioned that so-called causal evidence is not always as decisive as it may appear (Jazayeri and

Afraz, 2017), and by itself does not generate the level of understanding we wish to attain

(Krakauer et al., 2017). These and other arguments serve to renew a longstanding dictum in sys-

tems neuroscience, namely the primary importance of developing a rigorous theoretical or concep-

tual framework for understanding the behavior of interest. Only then can clear hypotheses be

articulated about the causal role of neural populations or circuits in generating the behavior.

The study of perceptual decision making has achieved a degree of progress toward this goal, in

part by leveraging detailed knowledge of the neural representation of sensory evidence supporting
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the decision (reviewed by Cohen and Newsome, 2004; Romo and Salinas, 2001; Shadlen and

Kiani, 2013). One well-studied behavioral task requires judgment of the net direction of motion in a

noisy visual display designed to promote the integration of motion information across the display

and over time. Neurons in motion-sensitive cortical areas, especially the middle temporal (MT) and

medial superior temporal (MST) areas, are well suited to provide the evidence for the task, and theo-

retical considerations (Gold and Shadlen, 2001; Shadlen et al., 1996) point toward a simple and

plausible computation: the subtraction of spike counts (or rates) between pools of neurons favoring

each of the direction alternatives. This difference furnishes a quantity proportional to the log likeli-

hood ratio favoring a given alternative, a statistical measure of the weight of evidence that can be

accumulated over time to support optimal statistical decision making (Gold and Shadlen, 2002;

Wald, 1947)

Building on the work of Newsome and colleagues (Celebrini and Newsome, 1995;

Salzman et al., 1992), Ditterich et al. (2003) took advantage of the columnar organization of MT

(Albright et al., 1984) to demonstrate, beyond simply a causal role for these neurons in the task,

the specific differencing-and-integration mechanism that was previously hypothesized on theoretical

grounds. Using electrical microstimulation (mStim) to activate neurons that were largely within a sin-

gle direction column, they confirmed earlier reports showing that monkeys’ choices were biased

toward the preferred direction of the activated neurons. More importantly, mStim increased the

speed of decisions in favor of the preferred direction while slowing decisions made in favor of the

opposite direction. The results supported a model in which the decision is formed by temporal inte-

gration of momentary evidence, defined as the difference in activity of pools of MT neurons tuned

for the preferred and anti-preferred motion direction (Ditterich et al., 2003). More recently, we

showed that decision confidence is affected by mStim in a way that is quantitatively commensurate

with the effect on choices and well explained by a bounded evidence accumulation model

(Fetsch et al., 2014a). Taken together, these findings suggest that a common process of evidence

accumulation underlies all three behavioral measures of decision making in this task: choice, reaction

time, and confidence.

Causal activation of neurons informs our understanding of the sufficiency, but not the necessity,

of neural activity for driving behavior. Thus, reversible inactivation offers an important complement

to stimulation, but conventional methods in primate neuroscience (e.g., muscimol or cooling) are

lacking in both spatial and temporal resolution. The temporal component is crucial and often

neglected. Indeed, the insights gained from the mStim studies described above depended on target-

ing the perturbation not only to the appropriate neurons but also the appropriate time frame within

a trial (Seidemann et al., 1998). mStim itself has other drawbacks, including the possibility of anti-

dromic activation, the generation of unwanted temporal and spatial patterns of inactivation

(Butovas and Schwarz, 2003; Logothetis et al., 2010; Seidemann et al., 2002), and the difficulty

of quantifying concurrent changes in neural activity due to voltage artifacts (but see Gnadt et al.,

2003).

To address these limitations, we used an optogenetic approach to suppress MT activity during a

motion discrimination task with post-decision wagering (PDW; Figure 1A). While some primate

optogenetics studies set out to illuminate the largest possible volume of tissue (Acker et al., 2016;

Gerits et al., 2012), we used very low light power levels to target relatively small clusters of excit-

atory neurons with similar selectivity for direction of motion. The rationale for this approach is that,

in MT, such clusters constitute a critical functional unit for the conversion of a sensory representation

into evidence for the decision. We found that optogenetic suppression was capable of inducing a

choice bias against the neurons’ preferred direction, and a qualitatively similar change in the pattern

of post-decision wagering, broadly consistent with a common mechanism underlying choice and

confidence. We also found intriguing evidence for compensatory changes in the readout of MT activ-

ity, on both the sub-second and tens-of-minutes time scales. The results highlight the importance of

spatial and temporal specificity in causal interventions, and they suggest a possible explanation for

weak behavioral effects of optogenetic manipulations in some previous nonhuman primate studies.

Results
We examined the effects of optogenetic inactivation (hereafter, photosuppression) in extrastriate

visual cortex (area MT) on perceptual choices and decision confidence. Two monkeys were trained
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to perform a random-dot motion (RDM) direction discrimination task with post-decision wagering

(PDW; Figure 1A). The task was to decide whether the net direction of dot motion was to the left or

to the right, and to indicate the choice with a saccade to a leftward or rightward target when

prompted. In addition to the choice targets, a ‘sure-bet’ target was presented during the delay

period on a random half of trials, allowing the monkey to receive a guaranteed but smaller reward

and thereby indicate its lack of confidence in the binary left-right decision. As in previous studies

(Fetsch et al., 2014a; Kiani and Shadlen, 2009; Zylberberg et al., 2016), monkeys chose the sure-

bet most frequently when the motion was weak (Figure 1B) and of short duration (Figure 1—figure

supplement 1B), and their accuracy was greater when the sure-bet was available but waived, versus

when it was unavailable (Figure 1C; p<10�10, logistic regression). These behavioral observations,

and quantitative analyses published previously (Fetsch et al., 2014a; Kiani and Shadlen, 2009),

serve to validate the PDW assay as a measure of confidence—that is, a prediction of accuracy based

on the state of a decision variable on a given trial, rather than a low-level estimate of trial difficulty

or an index of lapses of attention.

Histological and physiological characterization of Jaws expression
At least 8 weeks before commencing experiments, area MT in one hemisphere of each animal was

injected with an AAV vector to drive expression of the red light-sensitive chloride pump Jaws (crux-

halorhodopsin; Chuong et al., 2014) under the control of the CaMKIIa promoter. The two animals

continue to participate in experiments and are unavailable for histology. Therefore, to test the over-

all efficacy of the AAV-CaMKIIa-Jaws vector (to our knowledge, not previously used in the macaque),

we performed immunohistochemical analysis in a third animal following injections in the lateral intra-

parietal area (LIP). This analysis revealed robust Jaws-GFP expression in superficial and deep layers

(Figure 2A), and a tropism for excitatory pyramidal cells (Figure 2B), as shown in previous studies

Figure 1. Direction discrimination task with post-decision wagering (PDW). (A) The monkey fixates on a central fixation point to initiate the trial. Two

red choice targets are presented, followed by a random-dot motion (RDM) stimulus in the receptive field of the recorded neurons (left panel), shown for

an experimenter-controlled variable duration (Figure 1—figure supplement 1). On a random half of trials, a ‘sure-bet’ target (Ts) is presented (blue

spot in the lower panels). After a delay period, the monkey can report his choice by a leftward or rightward saccade to one of the red targets to obtain

a large juice reward if he is correct, or, if available, choose the sure-bet target for a small but guaranteed reward. On half of trials, including both Ts-

present and Ts-absent trials, the RDM stimulus was accompanied by red laser illumination (step-rampdown power profile) of a cluster of neurons

expressing the light-sensitive chloride pump Jaws. (B) Proportion sure-bet choices as a function of motion strength (‘confidence function’) for all no-

laser trials (N = 2 monkeys, 23 sessions, 9912 trials). Error bars in B and C indicate standard errors of the proportions and are often smaller than the

data points. (C) Proportion of preferred-direction choices as a function of motion strength (‘choice function’) for all no-laser trials, separated by whether

the sure-bet option was unavailable (dashed) or available but waived (solid).

DOI: https://doi.org/10.7554/eLife.36523.002

The following source data and figure supplement are available for figure 1:

Source data 1. Data and Matlab code for reproducing all panels and figure supplements for Figure 1.

DOI: https://doi.org/10.7554/eLife.36523.004

Figure supplement 1. Distribution of viewing duration and its effect on confidence.

DOI: https://doi.org/10.7554/eLife.36523.003
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using the CaMKIIa promoter (Han et al., 2009; Nassi et al., 2015). This tropism was not as strong

as in previous work: 9% of Jaws-GFP-positive neurons (83 of 903) were double-labeled for the inhibi-

tory marker parvalbumin (Figure 2B), giving an upper bound on selectivity of 91%, compared

to >98% in macaque primary visual cortex (2 of 119 cells double-labeled for any of three different

inhibitory markers; Nassi et al., 2015), and 100% in a study of the frontal eye field (0 of 78 cells dou-

ble-labeled for GABA; Han et al., 2009). However, in addition to being conducted in different corti-

cal areas, these studies used lentiviral vectors rather than AAV vectors. Thus, the effectiveness of

promoter-based targeting of excitatory neurons likely depends on the viral vector and/or serotype

(Nathanson et al., 2009; Gerits et al., 2015), and could also vary across brain areas. We emphasize

that any conclusions from Figure 2 in relation to the results presented below should be rendered

with caution, considering possible differences in cell-type distributions and laminar organization of

MT versus LIP.

In each experimental session, we advanced a custom optrode into area MT and began searching

for candidate sites for testing the effects of photosuppression on behavior. If a suitable site was

found (see Materials and methods), the monkey commenced the task described above, with low-

power red illumination (633 nm, total power = 0.25–2.0 mW, irradiance = 2–16 mW/mm2 at a dis-

tance of 300 mm) delivered concurrently with visual stimulation (laser delayed by a 20 ms) on a ran-

dom half of trials. Note that unlike previous studies, a red-shifted opsin was chosen not for its

suitability for large-volume tissue illumination (Acker et al., 2016) but for its superior photocurrent

at very low irradiance (Chuong et al., 2014). Optrode design, laser power, and site selection criteria

were all intended to limit the light-induced suppression of activity to a relatively small cluster of MT

neurons with consistent receptive field and tuning properties (i.e., preferred speed and direction of

motion). We estimated tissue irradiance as a function of laser power and distance from the fiber tip

 

I II/III IV V VI

PV+ [N=1005]GFP+ [N=903]

Double-labeled  [N=83; 9%]

DAPI

Jaws-GFP

Parvalbumin

A B C

DAPI
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Figure 2. Transduction of neurons in macaque lateral intraparietal area (LIP) by AAV-CamKIIa-Jaws-KGC-GFP-ER2. (A) Histological section imaged at

10X showing expression of Jaws (green) following a series of viral vector injections along a single injectrode penetration in area LIP (different monkey

and brain area than was tested in experiments described below). Expression was strongest in layers II/III and V. Red: NeuN. Blue: DAPI. Scale bar = 1

mm. (B) 20X image of a nearby section stained for Jaws-GFP (green) and the inhibitory marker parvalbumin (PV, red). Scale bar = 500 mm. (C) Cell

counts from the image in B, quantifying the small but nontrivial minority of neurons double-labeled for Jaws-GFP and PV. Approximate layer

boundaries are indicated in gray.

DOI: https://doi.org/10.7554/eLife.36523.005
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using available online tools (https://web.stanford.edu/group/dlab/cgi-bin/graph/chart.php) as well

as Monte Carlo simulations (Stujenske et al., 2015) (Figure 3—figure supplement 1). These esti-

mates suggest that physiologically effective irradiance levels extended at most 300–500 mm from the

fiber tip, which we confirmed qualitatively in pilot experiments using a fiber affixed to a linear elec-

trode array (V-Probe, Plexon, Inc., Dallas, TX). After identifying a candidate site, we titrated the laser

power to achieve an amount of suppression just shy of maximum (saturating) levels (Figure 3—fig-

ure supplement 2).

During the mapping procedure, we occasionally isolated single neurons and used this opportunity

to better quantify the physiological effects of the light. Single-unit visual responses to high-coher-

ence RDM stimuli—presented at the preferred direction and speed—were strongly suppressed on

average (N = 26; Figure 3A), although a handful of neurons showed no effect or an increase in firing

rate. Presumably this handful of cells includes those that did not express Jaws, as well as a small

minority that were indirectly activated through polysynaptic mechanisms. Among putative Jaws-

expressing neurons, the visually evoked response, after subtracting baseline activity, was suppressed

by 101% (±13% SEM; N = 20; Figure 3B). Without baseline subtraction, the average firing rate dur-

ing stimulus presentation was reduced by 72% ± 5%. In contrast, MU responses during the discrimi-

nation task were reduced by an average of 33% (±0.3% SEM, N = 20058 trials; Figure 3C). The

fractional degree of suppression (Equation 4; Materials and methods), calculated from MU activity,

varied substantially both within and across sessions (Figure 3A, inset; Figure 4A). We take this vari-

ability into consideration in the analyses to follow.

Note that the rebound of spiking after abrupt laser offset (Figure 3B), a known byproduct of pho-

tosuppression, was mitigated by introducing a 140 ms ramp-down of laser power in the majority of

behavioral sessions (Figure 3D; Chuong et al., 2014). We did not detect a difference in behavioral

effects when the rebound was suppressed, compared to an earlier subset of sessions without the

ramp-down (Figure 3D, inset), and therefore pooled all sessions for subsequent analyses.

Behavioral effects of photosuppression
To introduce the behavioral analyses presented below, we first revisit results from recent mStim

experiments using the same behavioral task (Fetsch et al., 2014a). Microstimulation in areas MT and

MST altered choice and confidence in a manner that largely mimics a change in the motion strength,

with a directionality predicted by the preferred direction of the stimulated neurons (Figure 4—fig-

ure supplement 1). Although there were subtle changes in the slope of the choice function, and the

height and width of the confidence function (see Discussion), here for simplicity we focus on the lat-

eral shift of the functions in units of motion strength (% coherence; Equations 1 and 3, Materials

and methods). The direction and size of these shifts in the previous study were well matched in the

aggregate, and highly correlated across sessions, suggesting that MT/MST activity contributes to a

common decision variable that governs both choice and confidence (Fetsch et al., 2014a; Kiani and

Shadlen, 2009).

Under this interpretation, suppression of MT activity—provided it is targeted to a population of

neurons that share a common tuning preference—should cause shifts in the opposite direction:

fewer choices in the preferred direction, and a rightward shift of the bell-shaped confidence func-

tion. Moreover, one would expect behavioral effects to depend on the degree of suppression, which

as noted above, was highly variable. For all laser trials in each session, we calculated the fractional

change in multi-unit firing rate (DR; Equation 4) relative to the mean of no-laser trials for the corre-

sponding session and trial type (motion direction and coherence; Figure 4A). We then estimated

the behavioral effect size (Equations 1 and 3) as a function of neuronal effect size, using a sliding

window of trials pooled across sessions and sorted by DR. This analysis (Figure 4B) showed that pho-

tosuppression caused a modest but significant choice bias in the predicted direction, provided that

the degree of suppression was greater than about 45% (Figure 4C; shift = �2.1% coh±0.6% SE;

p=0.001). The relationship between DR and the effect on confidence was more complex (Figure 4B,

blue trace), but the largest effects were also observed when suppression was strong (Figure 4D;

shift = �2.9% ± 1.4%, p=0.03). We therefore limited most of the following analyses to trials showing

clear effects on neural activity, using an arbitrary cutoff of 25% (DR < �0.25, unless noted), rather

than 45%, to increase statistical power.

To address potential contributions of neuronal response variability, independent of variability in

the degree of suppression, we performed the following control analysis. Taking only no-laser trials,
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we randomly assigned 50% of them a fictitious category (“sham laser trials”), sorted these trials as

above by their fractional difference (DR) relative to the mean for a given session and trial type (Fig-

ure 4—figure supplement 2A), and performed the same sliding-window analysis of choice bias and

shifts of the confidence function. We then repeated the procedure 100 times with different random-

ized trial assignments and averaged the results. The resulting traces (Figure 4—figure supplement

Figure 3. Photosupression of neural activity in area MT. (A) Fractional change in firing rate of isolated single units

(N = 26) in response to a high-coherence RDM stimulus and laser suppression, relative to RDM stimulus alone.

Single-unit data were collected during a fixation task. The inset shows the fractional change in multi-unit activity

recorded at the 23 sites tested in the discrimination task. (B) Average firing rate (peristimulus time histogram) of

single units showing significant Jaws-mediated suppression (N = 20). Laser onset occurred 20 ms after stimulus

onset, resulting in suppression that preceded the onset of visually-driven activity (i.e., firing rate driven below

baseline, then recovered to near-baseline levels during visual stimulation). A post-suppression rebound of activity

was observed after turning off the laser (and visual stimulus). All PSTHs depict spike counts in 1 ms bins convolved

with a 40 ms causal boxcar filter and converted to spikes/s (C, D) Average multi-unit activity for N = 23 sites

passing the selection criteria for the behavioral experiment (see Materials and methods), aligned to stimulus (dots)

onset (C) and offset (D). The majority of sessions included a ramp-down of 140 ms in laser power starting 20 ms

after stimulus offset, reducing the post-suppression burst seen when no ramp-down was used (inset). Shaded

region shows ± SEM. Figure 3—figure supplement 1 shows an estimated spatial distribution of irradiance based

on Monte Carlo simulations of light transmission in brain tissue, and Figure 3—figure supplement 2 illustrates an

example of varying laser power at a fixed distance.

DOI: https://doi.org/10.7554/eLife.36523.006

The following source data and figure supplements are available for figure 3:

Source data 1. Data and Matlab code for reproducing all panels and figure supplements for Figure 3.

DOI: https://doi.org/10.7554/eLife.36523.009

Figure supplement 1. Predicted irradiance based on Monte Carlo simulations of light transmission in brain tissue

(validated with previously published in-vivo measurements; Stujenske et al., 2015), for three different levels of

total laser power: 0.3 mW (A), 0.7 mW (B), and 1.2 mW (C) at a wavelength of 633 nm.

DOI: https://doi.org/10.7554/eLife.36523.007

Figure supplement 2. Titration of laser power.

DOI: https://doi.org/10.7554/eLife.36523.008
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2B) showed a weak trend consistent with a covariation between response fluctuations and behavior

(i.e., choice probability; Britten et al., 1996), but which was several fold smaller than in the original

analysis that included actual photosuppression (Figure 4B) and not statistically significant (p=0.4,

Equation 5, b6). In direct comparison with the effects shown in Figure 4C–D, the behavioral shifts

on a selected group of control trials with matching DR (i.e., less than -0.45) were significantly smaller

(p<10�5 for choice and p = 0.02 for confidence). This result implies that the behavioral effects we

observed under strong photosuppression cannot be explained away by normal response variability

and its covariation with choice (and confidence).

Figure 4. Behavioral effects of photosuppression depend on the magnitude of reduction in neural activity. (A)

Histogram of the fractional change in multi-unit firing rate (DR) on laser trials, relative to the mean on no-laser trials

for the corresponding session and trial type (Equation 4). (B) Behavioral effects, expressed as the horizontal shift

in the choice function (Equation 1, red) and bell-shaped confidence function (Equation 3, blue), plotted as a

function of DR. Each abscissa coordinate represents the mean of a sliding quantile, hence all the data in A are

represented even though the abscissa range is different. Shaded error regions indicate ± SEM. Figure 4—figure

supplement 2 shows the results of a corresponding control analysis of no-laser trials. (C) Choice functions for the

set of laser trials (red) exhibiting strong suppression (DR < �0.45, N = 3107 trials) compared to all no-laser trials

(black, N = 9249 trials). (D) The corresponding confidence functions (proportion sure-bet choices as a function of

motion strength) for the set of trials shown in C. For comparison, Figure 4—figure supplement 1 shows the

effects of electrical microstimulation from previous experiments in monkey D, and Figure 4—figure supplement 3

shows the distribution of effects session by session, including all trials irrespective of DR and other influencing

factors (see below).

DOI: https://doi.org/10.7554/eLife.36523.010

The following source data and figure supplements are available for figure 4:

Source data 1. Data and Matlab code for reproducing all panels and figure supplements for Figure 4.

DOI: https://doi.org/10.7554/eLife.36523.014

Figure supplement 1. Effects of electrical microstimulation (mStim) on choice and confidence.

DOI: https://doi.org/10.7554/eLife.36523.011

Figure supplement 2. Sham-laser control analysis.

DOI: https://doi.org/10.7554/eLife.36523.012

Figure supplement 3. Behavioral effects on individual sessions.

DOI: https://doi.org/10.7554/eLife.36523.013
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Temporal factors influence behavioral effects: compensation on
multiple time scales?
The result shown in Figure 4B implies that photosuppression was only effective at altering behavior

for a subset of trials. Indeed, most individual sessions failed to show statistically reliable effects on

behavior when analyzed in their entirety (Figure 4—figure supplement 3). However, while collecting

the data we noticed a tendency for systematic biases on laser trials to appear early within a session,

only to dissipate over the course of tens of minutes (100–500 trials; ~5 s per trial on average, includ-

ing intertrial intervals). This can be seen in the example session shown in Figure 5. Over the first 500

trials, the monkey tended to choose the preferred direction less often on laser trials vs. no-laser tri-

als, effectively shifting the psychometric curve to the right (Figure 5A; shift = �4.6%, p=0.14, Equa-

tion 1). In contrast, there was essentially no effect on choices in the remaining ~1000 trials of the

session (Figure 5B; shift = �0.7% coh, p=0.75). The pattern was similar for the confidence assay: a

rightward shift of the confidence function on early trials (Figure 5C; shift = �4.2%, p=0.34) but not

later trials (Figure 5D, 1.2%, p=0.80). This trend was evident when pooling across all sessions with

enough trials to measure it (minimum 800 trials per session, N = 10 sessions): rightward shifts early

in the session (choice shift = �3.5% coh±1.1%, p=0.001, Figure 5A’; confidence shift = �3.8% ±

1.9% [Equation 3], p=0.05, Figure 5C’) but not later (choice shift = �0.7%, p=0.26, Figure 5B’; con-

fidence shift = 0.1%, p=0.93; Figure 5D’). Post-hoc tests using generalized linear models (Equa-

tion 5, see Materials and methods) showed that the difference between early and late trials was

statistically significant for choice (p=0.01) and confidence (p=0.02, Bonferroni corrected).

Salzman et al. (1992) reported that the effects of mStim dissipated over the course of the behav-

ioral sessions, which they interpreted as indicating neuronal fatigue, damage, or shifts in the position

of the stimulating electrode. In our case, however, the decrease in effectiveness of photosuppression

on behavior was not accompanied by an attenuation of its effect on neural responses. In the exam-

ple session (Figure 5E vs. Figure 5F), the degree of suppression was slightly greater in early versus

late trials (DR = �0.80 ± 0.01 and �0.74 ± 0.01, respectively; p<0.05, bootstrap confidence interval,

resampling trials with replacement), but this quantitative difference seems unlikely to explain the

complete nullification of the behavioral effects (Figure 5B,D). Across all 10 sessions in the pooled

dataset (Figure 5E’ vs. Figure 5F’) the trend was in the opposite direction, toward greater suppres-

sion on late trials (DR early = �0.28 ± 0.008, late = �0.40 ± 0.004, p<0.05). Furthermore, we did not

observe a qualitative change in the direction selectivity of the affected neurons between early and

late trials (Figure 5G vs. Figure 5H; and Figure 5G’ vs. Figure 5H’). At the conclusion of a subset of

sessions, we re-measured direction tuning at multiple depths and found little evidence for optrode

drift, tissue damage or response fatigue. Instead, the results suggest a compensatory change in the

downstream readout of MT neural signals to reduce or nullify the effects of photosuppression on a

time scale of 10–40 minutes.

To examine this putative compensation at a finer grain, we plotted the choice and confidence

effects calculated in a sliding window of trials sorted by trial number after pooling across sessions

(Figure 6A; N = 8057 trials from 23 sessions; see Materials and methods). Interestingly, the effect

on confidence (blue trace) appears to dissipate more quickly than the effect on choice, and ‘over-

shoots’ zero for a period of time roughly between trial numbers 500–800 (~40–65 min), before set-

tling back to zero later in the session (Figure 6A). Note that positive values on the ordinate indicate

leftward shifts of the function, as observed previously with mStim, and are thus opposite of the

expected effect from inactivation. Although the trend was not statistically significant (p=0.14; Equa-

tion 3 applied to trial numbers 550–750), it raises the possibility of a dissociation between choice

and confidence on this particular subset of trials (see Discussion). Lastly, for comparison with previ-

ous work, we performed the same analysis on the mStim data from monkey D (Fetsch et al., 2014a).

Unlike photosuppression, and contrary to the findings of Salzman et al. (1992), the biases in choice

and confidence induced by mStim remained stable throughout the behavioral session (Figure 6—fig-

ure supplement 1A). This result implies that the capacity of cortical circuits to compensate for artifi-

cially induced activity patterns may be greater for photosuppression compared to mStim, although

we cannot ascertain whether the key difference is the sign (suppression versus stimulation) or the

modality (optogenetic versus electrical) of the perturbation.

The presence of compensatory changes in readout across trials led us to wonder whether such

changes could occur on a faster time scale as well. We addressed this question by grouping trials
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Figure 5. Behavioral, but not neural, effects of photosuppression dissipated over time within a session. (A, B) Choice functions for laser (red) and no-

laser (black) trials for an example session, separated by trials early within the session (A, trials 1–500) versus later in the same session (B, trial

number >500). Error bars show standard error of the proportions. (C, D) Corresponding confidence functions for the same groups of trials in A and B,

respectively. The decrease in overall sure-bet proportion between C and D, indicating an increase in overall confidence over the course of a session,

was a behavioral peculiarity of one monkey that was unrelated to photosuppression (i.e., occurred throughout training and in no-laser control sessions).

(E,F) Average multi-unit activity showing a similar degree of suppression for early (E) and late (F) trials. Shaded regions indicate ± SEM. (G,H) Average

firing rate on no-laser trials, early (G) vs. late (H) in the session, separated by signed motion coherence (positive = preferred direction, magenta;

negative = null (antipreferred) direction, cyan). (A’–H’) Same as A–H but for all sessions with >800 trials (N = 10 sessions, 4438 laser trials with

DR < �0.25, 6489 no-laser trials).

DOI: https://doi.org/10.7554/eLife.36523.015

The following source data is available for figure 5:

Source data 1. Data and Matlab code for reproducing all panels for Figure 5.

DOI: https://doi.org/10.7554/eLife.36523.016
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according to the experimenter-controlled stimulus (and laser) duration, which varied randomly across

trials (range = 95–925 ms, truncated exponential distribution; Figure 1—figure supplement 1A).

Remarkably, we found that the behavioral effects of photosuppression were largely restricted to tri-

als with short and intermediate durations (duration <~350 ms; Figure 6B). Figure 7 depicts this

trend pooled across all sessions, in the same format as Figure 5 and limited to the first 500 trials of

each session. Short-duration trials exhibited light-induced shifts of �4.7% (p=0.0006, Figure 7A)

and �5.7% (p=0.004, Figure 7C) for choice and confidence respectively, whereas long-duration trials

showed no systematic biases in either measure (choice: �0.6%, p=0.50; confidence: 0.38%, p=0.84).

The effect of duration was statistically significant (Equation 5, Materials and methods) for confidence

(p=0.002, Bonferroni corrected) and marginally so for choice (p=0.04).

As with the slower form of compensation, this sub-second attenuation of behavioral effects was

not readily explained by differences in MT neural responses on short- versus long-duration trials

(Figure 7E–H). We did observe weaker direction selectivity during the latter half of the stimulus pre-

sentation on long-duration trials (Figure 7H). It is conceivable that these late epochs contributed

less to behavior, under the assumption that neural signals contribute in proportion to their sensitivity

or informativeness (Britten et al., 1996; Gu et al., 2007; Purushothaman and Bradley, 2005). How-

ever, the relevant comparison here is between short- and long-duration trials, not early versus late

within a trial. Unsurprisingly, neuronal sensitivity was greater on long-duration trials when including

all spiking activity throughout the stimulus epoch (neuronal threshold = 27.2 ± 1.6% coh versus 37.5

± 2.5% for short durations; see Materials and methods). Thus, without additional assumptions, the

weaker direction selectivity at time points >300 ms (less separation of the traces on the right side of

Figure 7H versus 7G) cannot explain the inability of photosuppression to affect behavior on long-

duration trials. Indeed, any candidate explanation for this result must contend with the fact that

activity early in the stimulus epoch was suppressed equally on short- and long-duration trials

(Figure 7E vs. 7F), yet only the former showed behavioral effects. It seems improbable that

Figure 6. Attenuation of behavioral effects of photosuppression on long and short time scales. (A) Shifts of the

choice (red) and confidence (blue) functions (± SEM) as a function of trial number (~8 min per 100 trials). Trials

were pooled across sessions, conditioned on DR < �0.25 and duration <300 ms (N = 8057), and behavioral effects

(Equations 1 and 3) were calculated over a sliding window of 1750 trials sorted by trial number. (B)

Corresponding sliding-window analysis of trials sorted by stimulus/laser duration, after conditioning on DR < �0.25

and trial number <500. N = 7381 trials, window width = 1600 trials. Figure 6—figure supplement 1 shows the

absence of such attenuation in mStim data collected previously. Figure 6—figure supplement 2 repeats these

analyses after omitting one outlier session (see Materials and methods and Figure 4—figure supplement 3).

DOI: https://doi.org/10.7554/eLife.36523.017

The following source data and figure supplements are available for figure 6:

Source data 1. Data and Matlab code for reproducing all panels and figure supplements for Figure 6.

DOI: https://doi.org/10.7554/eLife.36523.020

Figure supplement 1. Effects of electrical microstimulation (mStim) as a function of trial number and duration.

DOI: https://doi.org/10.7554/eLife.36523.018

Figure supplement 2. Results of Figure 6A–B after omitting one outlier session (see Materials and methods and

Figure 4—figure supplement 3).

DOI: https://doi.org/10.7554/eLife.36523.019
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Figure 7. Compensation on a sub-second time scale. Behavioral effects of photosuppression were present on

trials with stimulus/laser epochs of short duration but not of longer durations (left and right columns, respectively),

whereas the degree of suppression and direction selectivity were similar across durations. Format as in Figure 5.

Data include trials with DR < �0.25 and trial number <500 (N = 4249 and 3132 trials for left and right columns,

respectively). All durations were randomly interleaved.

DOI: https://doi.org/10.7554/eLife.36523.021

The following source data is available for figure 7:

Source data 1. Data and Matlab code for reproducing all panels for Figure 7.

DOI: https://doi.org/10.7554/eLife.36523.022
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downstream circuits could treat such early activity differently, because at any given time during a

trial there would be no way to predict whether the stimulus (and laser) would terminate in the next

moment or continue. Below we discuss possible explanations and implications of this unexpected

finding.

Discussion

Focal optogenetic suppression
The results demonstrate that systematic behavioral effects of optogenetic manipulation in nonhuman

primates are achievable even when this requires the targeting of neural populations on a small spa-

tial scale, that of cortical columns or clusters of neurons with similar functional properties. This is the

scale at which electrical microstimulation has proven most effective, but nonhuman primate neurosci-

ence has lacked an inactivation counterpart with comparable spatial and temporal specificity, relying

on pharmacological and cooling methods that persist for minutes to days and affect larger swaths of

tissue (but see Afraz et al., 2015). There is justifiable excitement surrounding the development of

optogenetic methods for targeting particular cell types or anatomical projections (El-

Shamayleh et al., 2017; Klein et al., 2016; Stauffer et al., 2016; Ohayon, 2017), and many ques-

tions will require such an approach. Our study shows that another form of targeting—that of spatially

or topographically organized populations—is viable in monkeys using off-the-shelf viral vectors com-

bined with careful site selection and light delivery.

A common mechanism for choice and confidence
Decision confidence is defined as the subjective degree of belief that one has chosen the correct or

more rewarding option among alternatives. In many natural situations, the decision maker does not

receive immediate feedback on the accuracy of a choice, but instead must rely on confidence to

guide subsequent decisions that depend on previous outcomes (Averbeck, 2015; van den Berg

et al., 2016b). Confidence also has a powerful influence on learning and adapting to new environ-

ments. For instance, when negative feedback follows a choice made with high confidence, it implies

that something about the world has changed, triggering a shift in behavioral strategy or an increase

in learning rate (Purcell and Kiani, 2016; Yu and Dayan, 2005).

The neural basis of assigning confidence in a decision is not well understood. One class of

hypotheses asserts that the processing of the evidence that supports a choice simultaneously fur-

nishes an assessment of the reliability of the source of evidence, and hence a prediction about

whether the choice will be correct (for reviews see Fetsch et al., 2014b; Kepecs and Mainen, 2012;

Meyniel et al., 2015; Pouget et al., 2016; Yeung and Summerfield, 2012). In this vein, Kiani and

Shadlen (2009) demonstrated how choice, reaction time, and confidence can arise through a com-

mon mechanism of evidence accumulation, and several studies have since provided additional sup-

port for this idea (Fetsch et al., 2014a; Kiani et al., 2014; van den Berg et al., 2016a;

Zylberberg et al., 2016). Using the same task as in the present study, we found that the quantitative

link between choice and confidence was preserved under MT/MST microstimulation (Fetsch et al.,

2014a). Changes in both measures—and their specific relationship with motion strength and viewing

duration—evinced a commensurate change in the strength of momentary evidence, and the

improvement in discrimination sensitivity when confidence was high (i.e., Figure 1C) was retained, as

predicted by a bounded evidence accumulation model.

The present study provides an inactivation counterpart to this approach. Photosuppression in MT

biased the animal’s choices away from the preferred direction, and also altered confidence in a way

that mimics a change in motion strength (i.e., a rightward shift of the bell-shaped curve describing

sure-bet choices as a function of coherence). The effects were reasonably well matched as a function

of the degree of suppression (Figure 4B), and they dissipated over a similar time course, both across

(Figure 6A) and within trials (Figure 6B). These results are consistent with a role for MT neurons in

providing a shared source of evidence supporting both aspects of a decision. Some features of the

data may seem, at first glance, incompatible with this straightforward account. For instance, photo-

suppression appears to have exerted greater effects on confidence when the motion was in the anti-

preferred direction (negative coherence values, see Figures 4D, 5C’ and 7C), and this asymmetry

was often accompanied by a subtle increase in the slope of the choice function (most evident in
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Figure 7A). Interestingly, these observations can be reconciled in a bounded accumulation frame-

work, the interpretation being that photosuppression caused both a bias and an increase in discrimi-

nation sensitivity by improving the signal-to-noise, just as mStim appeared to reduce it (Fetsch et al.,

2014a). Such a change would affect both the slope of the choice function and the width of the confi-

dence function, the latter giving rise to the asymmetry. Our data set lacks sufficient power to conclu-

sively support or reject this possibility, but if borne out by additional experiments, it would be within

a family of previously observed alterations to signal and noise that jointly affect confidence and

choice in a manner predicted by bounded accumulation (Zylberberg et al., 2016).

Other subtle anomalies are not as easily incorporated in this framework. The effect of photosup-

pression on confidence (Figure 6A, blue) dissipated more rapidly across trials than the effect on

choices (Figure 6A, red), and even transiently shifted in the opposite direction (positive, or leftward).

Effects at the shortest durations (Figure 6B) were greater for confidence than for choice (but see

Figure 6—figure supplement 1 to compare to the size of such deviations observed with mStim).

Lastly, the size of the effect on choices tended to be greater on trials without the sure-bet option

available, compared to when it was available (data not shown), which was not the case for mStim

(Fetsch et al., 2014b). None of these discrepancies reached statistical significance, but taken

together, they suggest the possibility that the neural substrates of choice and confidence might be

partly dissociable at the level of the representation of sensory evidence. It would be of interest to

deploy manipulations that alter the correspondence between choice and confidence to a greater

degree than what we observed here, while recording simultaneously from sensory and higher order

areas. Recent studies in humans point toward several frontal lobe structures involved in generating

and reporting the sense of confidence (Bang and Fleming, 2018; Fleming et al., 2015;

Morales et al., 2018; Shekhar and Rahnev, 2018). Little is known about where and how such com-

putations occur in the nonhuman primate brain, although the supplementary eye field seems to play

a role (Middlebrooks and Sommer, 2012; So and Stuphorn, 2016).

Compensatory changes in the readout of sensory cortical activity
Behavioral effects of photosuppression were strongly attenuated over the course of the session (Fig-

ures 5 and 6A). This trend was not explained by differences in the physiological effectiveness of

photosuppression, nor in the responsiveness or selectivity of the affected neurons. Rather, the

results suggest a form of compensation or down-weighting of MT signals by downstream areas that

are reading out this activity to form a decision. Because the decision in our task is rendered with a

saccadic eye movement, the readout (and hence compensation) likely involves a network of areas

including the lateral intraparietal area, frontal eye field, and superior colliculus, although probably by

way of the thalamus rather than direct projections from MT.

What is the nature of the signal that triggers this compensation? In general, a pure choice bias

will tend to increase the error rate, so a mechanism that detects and counteracts the bias could be

beneficial in terms of maximizing reward. Downstream circuits could, in principle, learn to discount

signals that were associated with a lower rate of reward, even though the perturbation was randomly

interleaved across trials. However, in our experiments the reward rate was about 4% greater on laser

trials compared to no-laser trials, owing to the small magnitude of the bias and the subtle increase

in sensitivity. Thus, it is difficult to see how a reward-based associative mechanism could play a major

role.

We think the key may lie in the faster form of compensation, revealed by the inability of photo-

suppression to influence behavior on long-duration trials (Figures 6B, 7B,D). This observation is sur-

prising because the different durations were randomly interleaved, suggesting that the

compensation must be induced by the suppression itself and initiated within a few tenths of a sec-

ond. We do not know how this fast compensation comes about, but it is not a trivial consequence of

the brain placing greater weight on sensory evidence arriving earlier within a trial (e.g., Kiani et al.,

2008; Raposo et al., 2012), since early MT activity is suppressed to the same degree on long versus

short trials (Figure 7E,F). Instead, the results motivate the hypothesis that the suppressed activity is

sensed as anomalous or unreliable by downstream circuitry. That is, unlike mStim, the suppression of

cortical tissue might have an effect that is analogous to diaschisis (Carrera and Tononi, 2014;

Otchy et al., 2015), triggering a reconfiguration of functional connectivity in downstream networks.

This reconfiguration could cause structures involved in decision making to consult other sources of

evidence, either elsewhere in MT or from other visual areas (e.g., MST, V3a, or V4). Initially this
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happens only after the first few hundred ms within a trial, then gradually the readout becomes able

to rely on these signals from the start of the trial, resulting in late trials showing no effect of suppres-

sion even when limiting the analysis to short durations (Figure 6A). This account is admittedly specu-

lative, but it may suggest an opportunity for filling a major gap in our understanding, namely how

information is dynamically routed from a multitude of possible sources (both sensory and mnemonic;

Shadlen and Shohamy, 2016) to the circuits responsible for decision and action.

Conclusion
The approach taken in this study was motivated by a large body of research linking the functional

properties of sensory neurons to the formation of a perceptual decision (e.g., Afraz et al., 2006;

DeAngelis et al., 1998; Romo et al., 2000; Salzman et al., 1992). In nonhuman primates, the effec-

tiveness of modern causal tools for manipulating behavior has been limited, although not without

successes. One sensible response to this reality is to develop methods for illuminating larger vol-

umes of tissue (Acker et al., 2016; Gerits et al., 2012). In some cases, however, a more nuanced

understanding of the relationship between neural activity and behavior can yield important observa-

tions that would be obscured by the large-volume approach. Naturally, the ideal spatial scale

depends not only on the anatomy but on the specific question being addressed. For researchers

seeking to exploit the temporal control afforded by optogenetic inactivation, we suggest it is

also worthwhile to give consideration to the spatial distribution of functional properties, including

columnar and laminar segregation (Chandrasekaran et al., 2017; Chen et al., 2017; Self et al.,

2013), as well as mesoscale connectivity patterns (Lewis and Van Essen, 2000). Relating these

properties to behavior in the context of a well-characterized task can furnish insights that go beyond

qualitative statements about causal involvement.

The nullification of behavioral effects of photosuppression on two distinct time scales (Figures 5–

7) invites caution when interpreting inactivation experiments that fail to affect behavior. A key role

for MT in visual motion discrimination is not in doubt (but see Liu and Pack, 2017), but for other

areas and tasks that have not been extensively studied, or where the results are more equivocal, it

may be difficult to rule out compensation by circuits that perform the same or similar function (e.g.,

de Lafuente et al., 2015). The present study suggests that this compensation can operate on a

faster time scale than previously appreciated, further advocating the use of rigorous behavioral

methods to identify the appropriate time scale for a perturbation. While these observations pose

challenges to experimental neuroscience, they also attest to the brain’s capacity for functional recov-

ery after a small insult. One might hope that the tools for investigating causality in systems neurosci-

ence could help expose mechanisms that mediate such recovery so that they may be exploited for

neurological rehabilitation.

Materials and methods

Behavioral task
Two adult male rhesus monkeys (Macaca mulatta) performed a direction discrimination task with

post-decision wagering (PDW, Figure 1A), as described previously (Fetsch et al., 2014a; Kiani and

Shadlen, 2009; Zylberberg et al., 2016). In brief, animals were required to fixate a central target,

after which two direction-choice targets appeared 9˚ to the left and right of the fixation point, fol-

lowed by a dynamic random-dot motion (RDM) stimulus. Properties of the RDM (patch size, position,

and dot speed) were set for each experimental session to match the aggregate receptive field (RF)

and tuning properties of neurons throughout a 200–400 mm region near the optrode tip (see below

for site selection criteria). The monkeys had previously performed only left-versus-right discrimina-

tions for several years and were resistant to training on up-versus-down, thus we bypassed sites with

preferred directions >30˚ away from horizontal. Motion strength, or coherence (percent coherently

moving dots), on each trial was sampled uniformly from the set {0, 3.2, 6.4, 12.8, 25.6, 51.2}, and

stimulus duration was drawn from a truncated exponential distribution with range = 95–925 ms,

mean = 350 ms, and median = 300 ms.

After motion offset, the monkey maintained fixation through a variable delay period during which

a third target (the sure-bet target, Ts) was presented on a random half of trials. Ts differed in color

and size from the direction choice targets, and was positioned 6˚ above the fixation point,
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perpendicular to the axis of motion and the direction-choice targets. Whether or not Ts was pre-

sented, the delay period ended with disappearance of the fixation point, which served as a ‘go’ cue

for the monkey to saccade to one of the targets. If Ts was available, the monkey could choose it and

receive a guaranteed reward (drop of water or juice), or waive it and make the higher-stakes direc-

tion choice; otherwise only the binary direction choice was available. Correct direction choices

yielded a larger liquid reward than Ts choices, while errors resulted in a 4.5 s timeout. The ratio of

sure-bet reward size to direction-choice reward size (mean = 0.51 for monkey D, 0.62 for monkey N)

was set and periodically adjusted to encourage the animals to choose Ts approximately 60% of the

time at the weakest motion strengths.

Surgery and injection of viral vector
Procedures were in accordance with the Public Health Service Policy on Humane Care and Use of

Laboratory Animals, and approved by Columbia University’s Institutional Animal Care and Use Com-

mittee. Monkeys were surgically implanted with a head post and recording cylinder using aseptic

technique. Cortical area MT (left hemisphere in monkey D, right in monkey N) was initially targeted

using structural MRI scans and confirmed using established physiological criteria prior to injection of

virus.

Viral vector injections were performed while the animals were awake and seated in a primate

chair. A glass microinjection pipette (115 mm outer diameter; Thomas Recording GmbH, Giessen,

Germany) was affixed to a tungsten microelectrode (75 mm shank diameter; FHC, Inc., Bowdoin, ME)

with cyanoacrylate to create a custom ‘injectrode’ which was passed through a transdural guide

tube and advanced into area MT using a hydraulic microdrive. The metal connector at the back of

the pipette was coupled with flexible tubing to a Hamilton syringe loaded with 5–10 ml of virus

(AAV8-CamKIIa-Jaws-KGC-GFP-ER2; titer = 5.9�1012 genomes/ml; UNC Vector Core,

Chuong et al., 2014).

After locating a stretch of gray matter with neuronal responses consistent with the functional

properties of MT, we advanced the injectrode to the deepest point of this stretch and began the

first of a series of injections. Using a syringe pump (Harvard Apparatus, Holliston, MA), we injected

0.75–1.0 ml at a rate of 0.05 ml/min at each of several locations spaced 400–500 mm apart. Each injec-

tion was followed by a 10 min wait period before slowly (5 mm/s) retracting the injectrode to the

next site. This process continued until reaching the shallowest point of the target region, resulting in

5–8 sites and a total of 4–7 ml injected along a given track. On subsequent days, the procedure was

repeated in 1 (monkey N) or 3 (monkey D) neighboring grid holes (1 mm apart) for a total injected

volume of 13 and 19 ml, respectively. We then waited at least 8 weeks before beginning experi-

ments. The tissue remained viable and responsive to light for at least 12 months post-injection in

monkey D and at least 9 months in monkey N. Some virus likely reached portions of nearby area

MST, but all sites tested in the behavioral task were classified as residing in MT based on published

criteria (Churchland et al., 2007; Komatsu and Wurtz, 1988; Tanaka et al., 1986), including RF

size versus eccentricity, tuning for slower dot speeds (<20˚/s), and position relative to the white mat-

ter ventral to the sulcus.

To examine viral vector-mediated opsin expression histologically, we injected a third animal (mon-

key E) following the same procedure and using the identical vector stock injected in monkeys N and

D. Monkeys N and D remain actively contributing to other projects, thus precluding histological anal-

ysis of these animals. Monkey E received a total of 6.5 ml of vector delivered at seven injection sites

spaced 400 mm apart along a single penetration. These injections were made in the lateral bank of

the intraparietal sulcus, rather than in MT, due to constraints imposed by an existing recording

chamber.

One month after the injections, monkey E was euthanized with an overdose of pentobarbital and

perfused transcardially with 4% paraformaldehyde followed by a gradient of sucrose in phosphate

buffer (10%, 20% and 30%). The brain was removed and cryoprotected in 30% sucrose. Coronal sec-

tions (50 mm) were cut on a sliding microtome and mounted onto slides. Transduced cells were first

localized by inspecting native fluorescence signals in a series of sections spanning the intraparietal

sulcus. Additional sections near the region of strongest expression were processed immunohisto-

chemically using primary antibodies against GFP (Abcam 13970 RRID:AB_300798, 1:1000; Abcam,

Cambridge, MA) and against the pan-neuronal marker NeuN (Millipore MAB377 RRID:AB_2298772;

MilliporeSigma, Burlington, MA) or the inhibitory neuron marker parvalbumin (Swant PV235 RRID:
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AB_10000343 1:5000; Swant, Marly, Switzerland), and using secondary antibodies (Invitrogen Molec-

ular Probes, Thermo Fisher Scientific, Waltham, MA): Alexa 594 (A21203 RRID:AB_141633, 1:400),

Alexa 568 (A10042 RRID:AB_2534017, 1:400), Alexa 488 (custom, 1:400) and the nuclear stain DAPI

(Invitrogen Molecular Probes D-21490, 1:5000) for visualization by epifluorescence microscopy. An

upper bound on transduction selectivity for excitatory neurons was coarsely estimated by counting

the number of GFP-positive, PV-positive and double-labeled somata in a representative section

imaged at 20X (Figure 2B,C).

Optrode design, site selection and photosuppression protocol
Photosuppression was achieved using a custom optrode of similar design to the injectrode

described above: a tungsten microelectrode (75 or 100 mm shank diameter,~1 MOhm; FHC) glued

to an optical fiber (Thorlabs UM22-100, core+cladding diameter=110 mm; Thorlabs, Newton, NJ).

The fiber tip was sharpened as follows to reduce tissue damage and generate a broader light cone

(Dai et al., 2014; Hanks et al., 2015): After stripping the fiber jacket, the tip was immersed in 48%

hydrofluoric acid to a depth of 0.5–1.0 mm, with the polyimide coating intact to enhance smooth-

ness and reproducibility of the resulting tip (‘tube etching’; Lambelet et al., 1998; Stöckle et al.,

1999). The immersion took place within the narrow end of a standard 100 ml pipette tip containing

the acid and sealed with Parafilm. After 30–45 min, the acid was rinsed off and the polyimide coating

mechanically stripped, leaving 6–10 mm of bare cladding and a conical tip with full angle of approxi-

mately 15˚. The sharpened fiber was then passed through the guide tube along with an electrode

and the two were glued together using a tiny amount of cyanoacrylate, with the electrode tip posi-

tioned 300–500 mm ahead of the fiber tip. The source end of the fiber patch cable was connected to

a 633 nm diode laser (LuxX +633–100, Omicron-Laserage Laserprodukte GmbH, Rodgau, Germany)

under analog and digital control.

Prior to each session, we used a handheld power meter (Thorlabs PM160) to calibrate the total

light power as a function of analog input to the laser controller. Given the known values for the

beam half-angle in air (20–30˚) and separation between fiber and electrode tips (300–500 mm), we

estimated the irradiance of neurons near the electrode tip using the brain tissue light transmission

calculator provided by the Deisseroth Lab a Stanford University (https://web.stanford.edu/group/

dlab/cgi-bin/graph/chart.php), as well as additional Monte Carlo simulations (Stujenske et al., 2015)

(Figure 3—figure supplement 1). The goal (see below) was to use the minimum irradiance required

to saturate the reduction in firing rates of neurons within a small region of interest (300–500 mm

diameter), taking advantage of the fact that irradiance in tissue falls off exponentially with distance.

Thus, total light power was nearly always kept below 2 mW (16 mW/mm2 at a distance of 300 mm)

and was typically between 0.3 and 1.0 mW (1.2–4.0 mW/mm2) during the discrimination task (see

Figure 3—figure supplement 2).

After advancing the optrode into area MT and pausing 20–40 min to allow the tissue to stabilize,

we isolated single-unit (SU) or multi-unit (MU) activity using Plexon SortClient software (Plexon, Inc.).

RF size, position, and selectivity for motion direction and speed were assessed using briefly flashed,

99% coherence RDM stimuli while the animal fixated a central target. Candidate sites were mapped

extensively before each behavioral session to ensure consistency of tuning/RF parameters across at

least 200 and preferably >300 mm of cortex. Responsiveness to red light was concurrently assessed

by randomly interleaving laser trials (laser + RDM) with no-laser trials (RDM only), and sites were

bypassed unless we observed a significant decrease in MU firing rate on laser versus no-laser trials

(t-test, p<0.01) throughout the target area. A site was considered provisionally acceptable if (a) RF

and tuning parameters remained relatively stable (D preferred direction <45˚) for at least 200 mm, (b)

direction selectivity was sufficiently strong, with at least two standard deviations separating pre-

ferred and null (antipreferred) direction MU responses, and (c) activity on laser trials was reduced by

at least 10%. Once we encountered an acceptable site, we attempted to position the optrode at the

optimal depth with respect to the above considerations, and commenced the discrimination task.

Twenty-seven sites were provisionally accepted (17 in monkey D, 10 in monkey N), but 4 sites in

monkey D were rejected post-hoc after failing to maintain robust suppression of MU activity

throughout the session.

On a random half of discrimination trials, including Ts-present and Ts-absent trials, red light was

delivered throughout the visual stimulus epoch. The laser power profile was a constant square pulse,

and in a majority of sessions was terminated with a 140 ms linear ramp-down to reduce the post-
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suppression burst (Figure 3D and inset; Chuong et al., 2014). Laser onset began 20 ms after stimu-

lus onset to partially account for visual response latency while ensuring that photosuppression began

before the earliest feedforward visual inputs reached MT. Onset of the ramp-down began 20 ms

after visual motion offset.

The fiber jacket and optrode shank were covered with opaque material such that no laser light

was visible to the animal. Nevertheless, to rule out possible nonspecific effects of illumination,

including tissue heating, we performed eight control sessions in which the optrode tip was posi-

tioned either near the surface of the brain (N = 2), or in the vicinity of the dorsal superior temporal

sulcus but at least 2 mm outside the viral injection site (N = 6). No behavioral effects of illumination

were observed in these control sessions.

Data analysis
All analyses were performed using custom routines in MATLAB (MathWorks, Natick, MA). We quan-

tified the effect of photosuppression on behavioral choices using the logistic regression model:

Ppref ¼ 1þ e�Q
� 	�1

; Q¼ b0þb1Cþb2ILþb3CIL (1)

Where Ppref is the probability of a preferred-direction choice, C is signed motion coherence (posi-

tive = preferred direction, negative = anti-preferred direction), and IL is an indicator variable for the

presence/absence of laser illumination. The biasing effect of photosuppression is expressed in units

of coherence by the ratio b2/b1, and its effect on discrimination sensitivity (slope) is captured by b3.

The coefficients were fit by maximum likelihood estimation, with standard errors (SEs) estimated as

the square roots of the diagonal elements of the inverse of the Hessian matrix. SEs were used to cal-

culate t-statistics and corresponding p values to test the null hypothesis that a given bi ¼ 0. To quan-

tify the difference in sensitivity when Ts was available versus unavailable (Figure 1C), we replaced IL
in Equation 1 with an indicator variable for the presence/absence of Ts. For display purposes,

smooth curves in Figure 4C, 5A,B and 7A,B were generated using the simpler model:

Ppref ¼ 1þ e�Q
� 	�1

; Q¼ b0 þb1C (2)

fitted separately to laser and no-laser trials. Unless otherwise indicated, plots and analyses of choices

include both Ts-present (waived) and Ts-unavailable trials.

The effect of photosuppression on confidence was quantified by fitting the probability of a sure-

bet choice (Psb) with the Gaussian function:

Psb ¼ Ae� Cþ�þdILð Þ2=2s2

(3)

Where C is signed coherence, IL is the indicator variable for the laser, and A, m, s, and d are free

parameters. The parameter d captures the photosuppression-induced lateral shift of the Gaussian in

units of coherence.

For each laser trial, we estimated the degree of suppression of neural activity as follows. Multi-

unit spike events were counted from 60 ms after RDM onset until 60 ms after RDM offset, then con-

verted to spike rate (Rlaser) by dividing by the stimulus duration. The fractional change in spike rate

(DR) was then computed by comparing each Rlaser with the mean spike rate of a matching set of no-

laser trials (�Rno�laser), defined as being of the same session, motion direction, coherence, and quartile

of stimulus duration:

DR ¼ Rlaser � �Rno�laserð Þ=�Rno�laser (4)

Behavioral effects as a function of DR (e.g., Figure 4B) were computed by selecting laser trials

with a given range of DR and comparing them to all no-laser trials across all sessions, using Equa-

tions 1 and 3 for choice and confidence, respectively. The traces in Figure 4B were mapped out by

repeating this procedure for each of many sliding windows of trials sorted by DR, where the window

width was 2100 trials (approximately 1=5 of laser trials, i.e. a sliding quintile) and the step size was 10

trials. Similarly, Figure 6A and B were constructed by sorting trials by the variable on the abscissa

(conditioned on two other post-hoc variables; see below) and computing behavioral effects using a

sliding quartile window.
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Having observed variation in the size of behavioral effects as a function of three main explanatory

variables—fractional change in spike rate on laser trials (DR), trial number within session (T), and stim-

ulus/laser duration (D)—we performed post-hoc statistical tests of these relationships using binomial

generalized linear models (logistic regression, using the MATLAB function glmfit). The trends

depicted in Figure 6 were qualitatively similar in the two monkeys, thus we pooled the data for

these analyses. One session showed clear shifts in the opposite direction than predicted by the local

MU activity (red data point in upper-right quadrant of Figure 4—figure supplement 3), yet these

paradoxical effects were still sensitive to trial number and duration. Since our main focus was on the

time course of these trends rather than on the size of behavioral effects overall, we manually

reversed the direction preference associated with this individual session before pooling with the rest

of the data. Excluding this session did not alter the qualitative trends shown in Figures 5–7 or the

results of the main statistical tests.

Each post-hoc GLM consisted of three predictors, plus all 2-way interaction terms. The predictors

were: signed motion coherence (C), the indicator variable for presence of the laser (IL), and an indica-

tor variable defining a median split for one of the three variables mentioned above (DR, D, or T). For

example, the model to test the influence of stimulus duration D on photosuppression-induced choice

effects was specified by:

Ppref ¼ 1þ e�Q
� 	�1

; Q¼ b0 þb1Cþb2IL þb3IDþb4CILþb5CIDþb6ILID (5)

Where ID = 1 if D < 300 ms (the median duration) and 0 otherwise. The model for DR substituted

I
DR (assigned to 1 if DR < -0.35, the median DR) in place of ID, and for trial number the corresponding

variable was IT (1 if T < 578, the median trial number). Since the relationship between trial number

and the confidence effect (Figure 6A, blue) was found to be non-monotonic, we used a lower cutoff

value of T < 300 to define IT for that test. For each model, the strength of the interaction between

the given explanatory variable and the biasing effect of photosuppression is captured by b6 and its

associated p value.

A similar strategy was used for the effects on confidence (replacing Ppref with Psb in Equation 5

and its counterparts for DR and T), except that the models were fit separately for trials with C < 0

and C > 0. This piecewise-logistic approach achieved adequate fits because each side of the bell-

shaped relationship between Psb and C is well approximated by a sigmoid, albeit of opposite slope.

This yielded two b6 coefficients and corresponding p values, and the test was deemed significant if

either were less than 0.05 after Bonferroni correction (multiplication by 2). To better isolate the

effects of trial number, all GLM analyses, as well as the sliding-window plot in Figure 6A, included

only trials with DR < �0.25 and D < 300 ms. Similarly, the GLMs for duration (and Figures 6B, 7A–

D) were limited to only trials with DR < �0.25 and T < 500.

To compare neuronal direction selectivity across different subsets of trials—e.g., short vs. long tri-

als (Figure 7)—we used a standard approach to calculate neural thresholds (Britten et al., 1992).

For each trial in a given session, the MU spike rate was normalized to the mean spike rate for 51.2%

coherence motion in the preferred direction during that session. Normalized spike rates were then

pooled across sessions, grouped according to desired criteria (duration, trial number within session,

etc.), and the distributions of spike rates for preferred- vs. antipreferred direction of motion were

compared for a given coherence level using ROC analysis. This quantified the ability of an ideal

observer to discriminate motion direction based on the neural responses. The performance of the

ideal observer (percent correct as a function of coherence) was fit with a cumulative Weibull distribu-

tion (Quick, 1974) and the a parameter (coherence level generating 82% correct) was taken as the

neuronal threshold.
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