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Representation of Confidence
Associated with a Decision by
Neurons in the Parietal Cortex
Roozbeh Kiani and Michael N. Shadlen

The degree of confidence in a decision provides a graded and probabilistic assessment of
expected outcome. Although neural mechanisms of perceptual decisions have been studied
extensively in primates, little is known about the mechanisms underlying choice certainty. We have
shown that the same neurons that represent formation of a decision encode certainty about the
decision. Rhesus monkeys made decisions about the direction of moving random dots, spanning a
range of difficulties. They were rewarded for correct decisions. On some trials, after viewing the
stimulus, the monkeys could opt out of the direction decision for a small but certain reward.
Monkeys exercised this option in a manner that revealed their degree of certainty. Neurons in
parietal cortex represented formation of the direction decision and the degree of certainty
underlying the decision to opt out.

Choice certainty—the degree to which a
decision-maker believes a choice is likely
to be correct—affects a variety of cognitive

functions: how we plan subsequent actions, how
we react and learn from mistakes, and how we
justify our choices to others. Choice certainty is
pivotal for planning actions in a complex envi-
ronment in which subsequent decisions depend on
pending outcomes of previous decisions (1–3).
For example, a decision to undergo a risky oper-
ation depends, among other factors, on the degree
of certainty that the diagnosis is correct. Psychol-
ogists have long proposed that choice certainty
serves as a link between the physical world and
belief: It provides a graded scale that allows
us to translate our convictions into suitable
actions (4, 5).

Despite the importance of choice certainty,
its neural mechanisms are poorly understood. It
is well established that choice certainty is close-
ly correlated with both decision accuracy and
reaction time (6–11). This close relationship sug-
gests that the same mechanism that underlies
the decision-making process might underlie cer-
tainty judgments (1, 10, 12, 13). It has been
suggested that neurons in orbitofrontal cortex
and cingulate cortex, which are known to rep-
resent reward expectation or conflict, represent
reward expectations associated with decision
uncertainty (14–16). However, these neurons
do not give rise to a representation of decision
uncertainty but presumably receive this infor-
mation from neurons that compute this quan-
tity in the decision-making process.

The neural mechanism of decision-making
has been investigated using simple perceptual

tasks in which a monkey makes a categorical
choice between two or more discrete options
based on a sensory stimulus (17). When the
monkey is required to report the perceived di-
rection of motion by a saccadic eye movement,
neurons in lateral intraparietal cortex (LIP) rep-
resent the accumulation of evidence, termed a
decision variable, that supports the target in
their response fields (RFs) (17–19). Further-
more, these neurons signal the termination of
the decision process when their firing rates reach
a critical level or bound (19–21). Theoretical and
experimental studies raise the possibility that
the neural computations approximate a form of
probabilistic reasoning about the alternatives
(22–24). We hypothesize that the graded, time-
dependent firing rates of LIP neurons also rep-
resent choice certainty. Our hypothesis, therefore,
unifies the representation of the three compo-
nents of decisions—choice, reaction time, and
certainty—in a single neural population.

Two monkeys made perceptual decisions
about the net direction of motion in a dynamic
random-dot display (Fig. 1A) (25). Task difficulty
was controlled by varying both the percentage
of coherently moving dots and the viewing du-
ration. After a delay period, the fixation point
was extinguished, which instructed the monkey
to indicate its direction choice by making an eye
movement to one of the direction-choice targets.
On a random half of the trials, the monkey was
given the option to abort the direction discrim-
ination and to choose instead a small but certain
reward associated with a third saccade target.
This “sure target” was shown during the delay
period, at least 500 ms after the random-dot
motion was extinguished. During motion view-
ing, the monkey did not know whether the sure-
bet option would arise. The task design, a form
of postdecision wagering (26–28), ensured that
the monkey made a decision about motion di-

rection on each trial. We hoped that the monkey
would choose the sure target when less certain
of the high-stakes direction choice, allowing us
to study neural responses associated with choice
certainty.

We first describe behavioral observations,
which demonstrate that the postdecision wager
reflects choice certainty. We then demonstrate a
neural correlate of this certainty in the LIP firing
rate. Together, these observations support a mech-
anism in which the same decision variable, rep-
resented by LIP neurons, underlies both the choice
and the degree of certainty in that choice.

The monkeys opted for the sure target when
the chance of making a correct decision about
motion direction was small. They exercised this
option more frequently for the weaker motion
strengths and for the shorter stimulus durations
(P < 10−8) [equation 1 (25) and Fig. 1B], that is,
when the probability of making an error was
higher (P < 10−8) [equation 2 (25) and Fig. 1C].
More interestingly, when the monkeys waived
this option, the choice accuracy was better than
on the trials when they were not offered the post-
decision wager (P < 10−3) [equation 3 (25) and
Fig. 1C]. This improvement was apparent at al-
most all motion strengths and stimulus dura-
tions. It implies that the monkeys did not choose
the sure target on the basis of stimulus difficulty
but instead based on a sense of uncertainty on
each trial. This same pattern was observed on
a subset of trials in which identical random-dot
patterns were repeated (P < 0.025) (fig. S1),
which suggests that the source of information
about difficulty is not governed solely by prop-
erties of the stimulus but also by internal varia-
bility that renders the evidence more or less
reliable to the decision-maker.

We recorded extracellularly from 70 LIP neu-
rons while the monkeys performed this task.
These neurons exhibited spatially selective per-
sistent activity that predicted whether an eye
movement was planned into the RF of the neu-
ron on a memory-guided saccade task (29–31).
For the main motion task, we placed one of the
direction targets (Tin) in the RF of the recorded
neuron, the other direction target (Topp) on the
opposite side of the screen, and the sure target
(Ts) orthogonal to the axis that connected the
two direction targets.

Figure 2A shows responses of an example
neuron for trials without the sure target. The
neural activity after motion onset underwent a
brief dip and then diverged to indicate the mon-
key’s decision for Tin or Topp. The activity per-
sisted through the delay period until the eye
movement (18). For simplicity, the graph com-
bines all motion strengths and stimulus dura-
tions (25), but, as shown previously (18–21), the
buildup of firing rate reflected the stimulus
strength (P = 0.01) [equation 10 (25) and fig. S2],
compatible with the representation of accumu-
lated evidence in favor of Tin. We observed a
similar divergence and persistence of activity for
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Tin and Topp choices on the trials in which Ts
was presented but was waived by the monkey
(Fig. 2B, solid traces).

In contrast, when the monkey chose Ts, the
activity after the motion changed more gradu-
ally and achieved intermediate values compared
with the Tin and Topp choices. This pattern per-
sisted into the delay period until Ts appeared (P <
10−8, t test). Before Ts appeared, the monkey did
not know whether the sure bet would be offered.
After the onset of Ts, there was a dip in activity,
followed by a return to the level of activity pre-
ceding the onset of Ts. When the monkey chose
Ts, the response gradually converged to the Topp
level. The profile of activity suggests that even
before the onset of Ts, the neuron was inform-
ative about whether the monkey would choose
or waive this option should it be offered.

We observed a similar pattern of activity
across the population of 70 LIP neurons (32).
Intermediate firing rates during motion viewing
and the early delay were associated with choos-
ing the sure target later in the trial, as shown by
the population average firing rates (Fig. 2D). To
quantify this effect in single neurons, we com-
pared activity in the 200-ms period before Ts

onset (Fig. 2D, hatched box) for trials in which
the monkey selected or waived the sure-bet option.
For motion toward Tin, the neural activity across
the population was significantly smaller for Ts
choices than for Tin choices [P = 0.007, analysis
of variance (ANOVA)] (Fig. 2E). For motion
toward Topp, the activity was significantly larger
for Ts choices than for Topp choices (P = 0.001)
(Fig. 2F).

These observations demonstrate that the
monkey is more likely to opt for Ts when the
LIP activity achieves an intermediate level of
firing rate. However, a possible concern is that
the intermediate level of activity represented by
the mean firing rates from many trials is an un-
fair representation of the activity on single trials.
According to this argument, the intermediate
means might represent a mixture of the high and
low firing rates that would have corresponded to
Tin and Topp choices, had the monkey indicated
a direction choice on these trials. This “mixture
of states” alternative makes a clear prediction,
which is not supported by the data. If the inter-
mediate means were solely mixtures of the
responses associated with Tin and Topp choices,
then the variance should reflect the dispersion of

values associated with these extremes. This idea
is rejected: The variance associated with Ts
choices was significantly smaller than the
variance associated with the mixtures of Tin
and Topp choices (P = 4.7 × 10−5, F-test). We
conclude that these intermediate levels of
activity are not artifactual but represent a low
state of certainty.

This conclusion is supported further by
comparing the activity from neurons on single
trials with the monkey’s decision to choose or
waive the Ts option (Fig. 3A). For each trial,
from each neuron, we calculated the deviation
of firing rate, in the epoch just preceding Ts
onset, from an intermediate level. The magni-
tude of this deviation was inversely related to
the probability that the monkey chose the sure-
bet option (P = 2.3 × 10−5) [equation 11 (25)
and Fig. 3A]. The influence of a single neuron
on the probability of a postdecision wager is ex-
pected to be small because it is but one mem-
ber of a large population of neurons that govern
the behavior, presumably (33–35). Nonetheless,
the significance of the effect is a strong indi-
cation that LIP responses represent the choice
certainty.

This single-trial analysis addresses another
possible concern. Because stimulus difficulty
(i.e., motion coherence and duration) affects
both LIP responses and confidence judgments,
it seems possible that the correlation between
LIP activity and the postdecision wager is merely
accidental, that is, totally explained by the stim-
ulus difficulty. Alternatively, if Ts choices are
based on LIP activity, they should be influenced
by both the stimulus and the noisy fluctuations
of LIP firing rates. To address this, we performed
a variant of the single-trial analysis described
in the previous paragraph. We calculated the
trial-to-trial fluctuation of LIP responses relative
to the mean response dictated by each motion
strength and direction. These residual fluctua-
tions before the sure-target onset had significant
leverage on the probability of choosing the sure
target (P = 4.0 × 10−5) [equation 12 (25)]. This
finding also held for the subset of trials in which
we used identical random-dot motion stimuli (P =
0.015). Therefore, the linkage of neural responses
with sure-target choices is not explained merely
by their shared covariation with the stimulus.
We conclude from these analyses that the var-
iable discharge of LIP activity was related to the
monkey’s choice certainty, whether these varia-
tions were caused by experimental manipulations
(i.e., motion strength and duration) or random
effects (i.e., neural noise).

The single-trial analyses have focused thus
far on neural activity in the delay period, imme-
diately preceding the onset of Ts. Is the LIP ac-
tivity during decision formation also related to
choice certainty? The evolution of neural activ-
ity accompanying motion viewing suggests an
affirmative answer. The rate of change of LIP
activity after motion onset, termed the buildup rate
(36), was related to the probability of choosing

Fig. 1. Postdecision wagering behavior in monkeys is indicative of choice certainty. (A) The sequence of
events in the task. After acquiring a central fixation point (small red circle), two direction targets (large red
circles) appeared on the screen, one inside the neural RF (gray shading), the other on the opposite side of
the screen. The motion stimulus appeared after a short delay, remained visible for 100 to 900 ms, and
was followed by another delay (1200 to 1800 ms). On half of the trials (lower branch) the delay persisted
until the fixation point was turned off, which served as a “go” signal that instructed the monkey to
indicate the perceived direction of motion by a saccadic eye movement to one of the direction targets. A
correct response led to a liquid reward; a wrong response led to no reward and a brief time-out. On the
other half of the trials (upper branch), a third target was presented 500 to 750 ms after extinction of the
motion. Choosing this sure target (Ts, blue circle) led to a smaller reward (~80% of correct reward). On
these trials, the monkey could choose Ts or a direction choice. The two trial types were randomly in-
terleaved. (B) The frequency of choosing Ts was greater when the motion strength (% coherence) was
weak or the duration brief. The points are data, grouped in duration quantiles (deciles). Error bars (SE) are
smaller than the symbols. (C) Decision accuracy when the Ts option was waived. The graph compares
performance on trials in which Ts was not shown (open circles, dashed curves) with trials in which Ts was
offered but waived (filled circles, solid curves).
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Ts later in the trial. For stronger stimuli, the
buildup was steeper (P < 10−8) [equation 10 (25)],
consistent with the accumulation of stronger

evidence, shorter decision times, and ultimately
more accurate decisions (13, 17). According to
our hypothesis, the buildup rates should tend

toward intermediate values when the monkey
chose Ts. To test this, we performed a logistic
regression analysis using buildup rates estimated
from single trials. Deviation of the buildup rate
from intermediate values was associated with a
lower probability of choosing the sure target (P =
0.017) [equation 11 (25) and Fig. 3B]. More-
over, this link was not simply due to covaria-
tion of buildup rates and choice certainty with
motion strength (P = 0.0018) [equation 12 (25)].

It is also interesting to note that, although the
fluctuations in buildup rate and delay period ac-
tivity were weakly correlated (r = 0.10, P < 10−8),
each exerted independent leverage on the like-
lihood that the monkey would opt for the Ts
wager (P < 0.03) [equation 13 (25)]. In other
words, both the evolution of decision-related
activity and the sustained activity in the delay
period carry information about choice certainty.
Although both quantities reflect the state of evi-
dence, variation in the buildup rate also affects
the amount of time it takes to reach a decision
(19–21, 37, 38), consistent with the long-held
view that decision time contributes to choice
certainty (8, 9, 12).

Indeed, a Bayesian framework that incorpo-
rates both evidence and decision time explains
several aspects of the data. As previously shown,
the left-right choices on this task are governed
by the accumulation of evidence favoring one or
the other option (17). This accumulation, which
we call a decision variable, v(t), is represented
by the firing rates of LIP neurons. It begins at a
neutral value and undergoes a random walk with
drift (also termed drift diffusion) as evidence ac-
cumulates for and against the two direction alter-
natives. The decision terminates naturally when
there is no more evidence (e.g., when the stim-
ulus duration is short) or when v reaches a
critical level or bound. In both cases, the choice
is determined by the sign of v. As previously
shown, this simple model explains the monkey’s
accuracy as a function of stimulus strength and
viewing time. It explains both the diminishing
returns associated with prolonged viewing in
our experiment (fig. S3) (20) and the trade-off
between speed and accuracy in reaction-time
experiments (13, 39, 40). It also explains the
saturating firing rate curves in Fig. 2.

A simple extension of this bounded evidence
accumulation model also explains the postde-
cision wagering. The key insight is that both v
and t convey information about certainty. Figure
4A shows the distribution of v(t), combined
across all stimulus strengths when the rewarded
direction is, for example, rightward. Applica-
tion of the decision rule described in the pre-
vious paragraph to v(t) would lead to different
proportions of correct and incorrect choices, de-
pending on the motion strength. This transfor-
mation is shown in Fig. 4B, which replaces
the probability distribution of v(t) with the log
odds of a correct decision. This is the log-posterior
odds based solely on v(t). For example, if a
rightward stimulus is shown, the log odds of a

Fig. 2. LIP activity predicts direc-
tion choices and the postdecision
wager. (A) Responses from one
neuron on trials in which Ts was
not presented. Average firing rates
for Tin (black) and Topp (gray)
choices are shown for all correct
choices (and the 0% coherent
motion strength) during motion
viewing and the delay period.
Averages are aligned to motion
onset (left part of graph) and

saccade initiation (right). (B) Responses from the same neuron on trials in which Ts was presented. The
dashed lines show neural activity on trials in which Ts was chosen (black and gray, motion toward Tin and
Topp, respectively). The middle portion of the graph shows activity in the delay period, aligned to onset of Ts.
(C and D) Population average responses of 70 LIP neurons from two monkeys. Same conventions as in (A)
and (B). Firing rates from each neuron were normalized to the mean level before onset of the motion
stimulus. (E) The activity before Ts presentation was smaller for Ts choices than for Tin choices. Each data
point represents the mean activity of an LIP neuron in the 200 ms before Ts presentation [hatched rectangle
in (D)]. Error bars, mean T SEM. Shading in the histogram shows significant cases (P < 0.05). The arrow
shows themean difference of normalized activity across the population (mean T SEM, –0.20 T 0.03). (F) The
activity before Ts presentation was larger for Ts choices than for Topp choices. Same conventions as in (E)
(mean difference = 0.18 T 0.02).

Fig. 3. Ts choices were cor-
related with trial-to-trial
variation of neural activity.
Responses from single trials
were represented as the ab-
solute deviation, in units of
standard deviation, from the
mean value using all the trials
from a neuron ( z score). (A)
The frequency of choosing Ts
as a function of deviation from
mean in the activity before Ts presentation. Curves are fits of equation 11 (25) to individual trials. The
points illustrated on the graph were formed by grouping trials into five bins. (B) The frequency of
choosing Ts as a function of deviations from the mean buildup rate of activity after motion onset. Same
conventions as in (A).
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correct choice is simply the log posterior odds
that the stimulus is to the right

Log
p(S1jv(t))
p(S2jv(t)) ¼ Log

∑
i
p(v(t)jS1,Ci)p(CijS1)

∑
i
p(v(t)jS2,Ci)p(CijS2)

þ Log
p(S1)

p(S2)

where C is motion coherence, and S1 and S2
represent the rightward and leftward motion
direction, respectively. The last term vanishes,
because the prior probability that motion is left
or right is equal. The summation terms imple-
ment marginalization over motion strength. The
left side of the equation formalizes belief in the
proposition S = S1.

From the depiction in Fig. 4B, it is easy to
imagine that opting out of the direction decision
might happen when the expected chance of
success based on v(t) at decision time is less
than a criterion level (Fig. 4C). This simple mod-
el explains the observed behavior and success-
fully predicts the amount of improvement in the
probability of being correct for trials in which
the monkey waives Ts. The model has only three
free parameters (table S1), which were set by
fitting the proportion of Ts choices and the
probability of being correct for trials without Ts
[dashed curves in Fig. 4D (R2 = 0.97) and Fig.
4E (R2 = 0.98)]. This establishes a prediction
(not a fit) for the probability of being correct on
the trials in which Ts was shown but waived
(Fig. 4E, solid curves) (R2 = 0.95). The agree-
ment between this simple model and the data
affirms the plausibility of the Bayesian sequen-
tial sampling framework (41).

Moreover, the evolution of v(t) predicted by
the model resembles qualitatively the responses
of LIP neurons (Fig. 4F and fig. S4). For stronger
motion, the decision variable associated with Ts
choices follows less intermediate trajectories
(note the separation of dashed curves), and the
decision variable associated with direction
choices rises (or falls) faster toward its plateau
level. Both of these features are evident in the
neural responses. The agreement is only approx-
imate, presumably because neurons other than
the ones we recorded contribute to the estimation
of certainty (1, 22). These neurons might repre-
sent evidence for other directions of motion, but
they are unlikely to represent the Ts choice option
directly, as shown next.

To gain a better understanding of the repre-
sentation of choice certainty across the popula-
tion of LIP neurons, we recorded from 19 cells
using the task configuration shown in Fig. 5. Ts
was in the RF, whereas the direction-choice tar-
gets were not. Although Ts was not displayed until
late in the delay period and only on half of the
trials, its position was fixed throughout the course
of the experiment. Nevertheless, these neurons

did not show a significant modulation of activity
during the motion stimulus or in the ensuing
delay period (42). Moreover, the weak activity
that was present was uninformative about the
choice to forego or choose the Ts option (Fig. 5B)
(P > 0.1 for both directions of motion). Unlike
the neurons with a direction choice target in the
RF, the neurons that encode the location of Ts do
not appear to represent choice certainty.

This observation argues against an alterna-
tive explanation of our finding based on al-
location of attention to the Ts location. More
generally, it provides additional evidence that

the monkey made a decision about the motion
direction in the period preceding the onset of
Ts, even on trials when it opted out of the di-
rection task. There is no indication that the
monkey approached the task as a choice be-
tween three alternatives, Tin, Topp, and Ts. How-
ever, after the appearance of Ts, these neurons
with a sure target in their RF became predictive
of the postdecision wager. Although it is not
obvious from the traces, the visual response in
the first 200 ms was slightly larger when the
monkey would choose Ts (P < 0.01, ANOVA),
suggesting that Ts was more salient when there

Fig. 4. A simple bounded
evidence accumulation model
predicted both the behavioral
results and the modulation of
LIP responses. (A to C) The
model. On each trial, the ac-
cumulation, v(t), diffuses to
one of the decision bounds
(gray lines). The process ter-

minates when v(t) reaches a bound or the stream of motion evidence ceases. (A) Representation of v(t) as a
propagating probability density, for all motion strengths, when the rewarded direction is rightward.
Positive values for v(t) represent accumulated evidence in favor of rightward. At time zero, the distribution
is a delta function at v = 0. As time elapses, the range of v(t) expands to fill the space between the two
bounds, and there is a drift toward positive values, as shown by the probability density of v at t = 800 ms
(inset to the right of color map). The distribution associated with leftward motion (not shown) is the mirror
symmetric graph reflected about v = 0. (B) The log odds of a correct response based on the value of v(t) at
decision time. Correct responses are associated with larger v, but the relationship between v and
probability correct changes with decision time. (C) Ts is chosen when the probability of a correct response
is less than a criterion level. (D and E) Model fits and predictions. The three model parameters (table S1)
were fit to the observed frequency of correct responses on trials in which Ts was not shown and the
observed frequency of Ts choices on trials in which Ts was shown. These parameters predict the probability
of a correct response on trials in which Ts was waived [solid curves in (E)]. (F) Comparison of model
predictions and neural data. The average trajectory of v(t) in the model was calculated for different
coherence levels using the fit parameters. The calculation is based on the stimulus durations used in the
experiment and assumes that v is fixed from termination of the accumulation process. The calculated
trajectories (top) resemble the LIP responses (bottom). Neural responses were detrended by subtracting
the mean response at each moment. Predictions are shifted by the neural latency (200 ms).

f
log posterior odds f

log likelihood ratio

f
log prior odds
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was greater choice uncertainty (43). The effect
was weak (median difference = 7.7%), but as
time elapsed during the remainder of the delay
period the firing rates gave a clear indication of
whether the monkey would choose the Ts.

Discussion. A connection between signal
reliability, choice accuracy, and confidence has
been proposed previously (1, 13, 14, 44, 45),
but until now this connection has not been ob-
served directly in the same neurons. Neurons in
a variety of brain structures represent the size,
preference, and probability of obtaining a reward
(15, 46–54), but it is not known how these rep-
resentations arise. The present results show that
the same neurons that participate in decision
formation (20, 55) carry the relevant signals for
assigning the probability of obtaining a reward. It
therefore seems likely that the computation of
choice certainty is passed from LIP to brain
structures that anticipate reward, and it is likely
that feedback from these structures affects LIP in
the epoch after the appearance of Ts to mediate
the decision to choose or forgo the Ts option.

The mechanism underlying the representa-
tion of certainty in LIP is linked to the same
evidence accumulation that underlies choice and
decision time (17, 20). This accumulation is
encoded in the firing rates of LIP neurons with
RFs aligned to the choice targets representing
the direction alternatives (18, 55–57). This is
the decision variable, v(t), that governs the
choice of direction, having either attained a
critical level—a decision termination bound—
or by comparison to a criterion if the evidence
stream ceases. This mechanism can be viewed
as a merging of decision models based on se-
quential analysis (58–60) and signal detection

theory (61). The magnitude of this decision
variable, combined with knowledge of elapsed
time, maps directly to the probability of obtain-
ing a reward. An associative-learning process
based on LIP responses can therefore underlie
the monkey’s choice of Ts. The ability to explain
the rich pattern of behavioral results and the
qualitative agreement between model and phys-
iology favors the simple conceptual model. It is
probably also consistent with other models that
exploit a broader population of LIP neurons to
encode posterior probability (22, 41).

This simple mechanism brings certainty,
which is commonly conceived as a subjective
aspect of decision-making, under the same rubric
as choice and reaction time (1, 62) and removes
the need to resort to metacognitive explanations
for certainty monitoring (45). Our findings sup-
port a low-level explanation of postdecision
wagering in our task, but they do not preclude
the possibility that an animal that experiences
subjective awareness of degree of certainty might
base such impressions on neural signals like the
ones exposed here.

LIP neurons are hypothesized to encode the
attentional salience or expected value of a visual
saccade target (52, 53, 63), but these concepts
cannot explain the pattern of LIP activity in our
experiment. For example, a diversion of atten-
tion away from Tin to the potential location of Ts
should have led to a reduction in firing rate for
both Tin and Topp directions during motion view-
ing and in the delay period before Ts appeared.
Attention (or motor planning) might explain the
activity just preceding saccades, but it does not
explain the intermediate firing rates, particularly
for Topp directions, in the key epochs of interest.

A second alternative, expected reward, seems
more plausible, at least to the extent that it mimics
the belief that a choice will be correct. However,
the expected value of Tin, in the objective sense
(from economics), changes as a function of mo-
tion strength (psychometric function) (Fig. 1C),
whereas the firing rate before Ts onset is minimally
affected by motion strength when the monkey
waives Ts (Fig. 4F and fig. S4). Even subjective
expected value, which is synonymous with cer-
tainty, fails to capture fully the deeper insight our
experiment reveals about mechanism: The evo-
lution of decision-related activity that gives rise
to a choice also underlies certainty and a wager
based upon it.

A famous controversy in the history of prob-
ability theory concerned whether it is mean-
ingful to embrace the truth of a hypothesis as a
graded quantity expressed as a probability or
whether, instead, hypotheses are simply true or
false. The latter approach led frequentists to
reject the Bayesian concept of degree of belief,
relegating probability to the analysis of error
rates in assertions of truth (64, 65). Our finding
suggests that when the brain embraces a truth, it
does so in a graded way so that even a binary
choice leaves in its wake a quantity that rep-
resents degree of belief. From this perspective,
our neural recordings support the idea of a
“Bayesian brain” (66) and a neural mechanism
of decision-making that does not flip into a
fixed point or attractor state but instead approx-
imates the formation of a probability distribution
(41, 67). Accordingly, the intermediate levels of
activity associated with less certain choices might
be a sign of a more homogeneous level of ac-
tivity across the population of neurons. Funda-
mentally, our results advance understanding of
the neural mechanisms that underlie decision-
making by coupling for the first time the mech-
anisms leading to decision formation and the
establishment of a degree of confidence.
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Characterization of Multipartite
Entanglement for One Photon Shared
Among Four Optical Modes
Scott B. Papp,1* Kyung Soo Choi,1* Hui Deng,2 Pavel Lougovski,3 S. J. van Enk,3 H. J. Kimble1†

Access to genuine multipartite entanglement of quantum states enables advances in quantum
information science and also contributes to the understanding of strongly correlated quantum
systems. We report the detection and characterization of heralded entanglement in a multipartite
quantum state composed of four spatially distinct optical modes that share one photon, a so-called
W state. By randomizing the relative phase between bipartite components of the W state, we
observed the transitions from four- to three- to two-mode entanglement with increasing phase
noise. These observations are possible for our system because our entanglement verification
protocol makes use of quantum uncertainty relations to detect the entangled states that span the
Hilbert space of interest.

Investigations of entanglement for two quantum
systemshave answeredmany fundamental ques-
tions in quantum physics (1, 2) and revealed

powerful new capabilities of quantummechanics
within the field of quantum information science

(3–5). Many of these advances have used well-
testedmethods for the characterization of quantum
entanglement in bipartite (two-component) sys-
tems (6, 7). Entangled states of more than two
systems enhance our knowledge of quantum theory,
because new classes of states are available (7–9).
Beyond applications to conventional quantum com-
putation (3), exotic multipartite states have emerged
as crucial resources for new directions in quantum
information processing such asmeasurement-based
quantum computation (10, 11), quantum secret
sharing (12), and quantum simulation (13). Despite

the extraordinary promise that they offer, unambig-
uously detecting multipartite entangled states is still
a major challenge from both an experimental and
a theoretical standpoint.

Genuine N-partite entanglement is realized
only with the simultaneous participation of all N
of the constituent systems. The exponential in-
crease with N in the amount of information re-
quired to describe the overall quantum system,
although exceedingly beneficial for large-scale
quantum information protocols (3), makes the
task of classifying (8, 9) and detecting such en-
tangled states extremely difficult (7). Still, there
are prescribed methods to detect entanglement in
select classes of multipartite states that generally
rely on reconstructing the density matrix %r. Linear
entanglement witnesses supplemented by tomog-
raphy of %r have been used to detect entanglement
in six (14) and eight (15) atomic ions, as well as
for hyperentangled photons (16). A serious draw-
back of quantum-state tomography is the prohibi-
tive number of measurements and their accuracies
that are required with increasing N.

Ourwork focuses on a specific class of quantum
states in which exactly one photon is coherently
sharedamongNdistinct opticalmodes in the formof

jW 〉 ¼ 1

2
½ðj1000〉 þ eif1 j0100〉Þ þ

eifðj0010〉 þ eif2 j0001〉Þ� ð1Þ
shown here forN = 4 andwith the relative phases f,
f1, f2 of the modes. This is a so-called W state,
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of Physics, University of Oregon, Eugene, OR 97403, USA.
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Supplementary Online Material 
 
 
Materials and Methods  
 
Behavioral task 
 
We measured the choice certainty in a direction discrimination task using a post-decision 
wagering design (Fig. 1A). Two adult rhesus monkeys (Macaca mulatta) were trained to 
judge the net direction of a field of dynamic random dots (S1, S2). Task difficulty was 
controlled by varying the viewing duration (100-900 ms, truncated exponential 
distribution) and the percentage of coherently moving dots (motion strength) as described 
previously (20, S3). After extinction of the motion display, the monkeys held fixation 
through a delay period (1200-1800 ms) before extinction of the fixation point. On a 
random half of the trials, a third target (sure target, Ts) appeared at a random time during 
the delay period (500-750 ms after motion offset) and stayed on through the delay period. 
After extinction of the fixation point, the monkey indicated its choice by making a 
saccadic eye movement either to one of the two direction targets or to Ts, if present. The 
monkey received a liquid reward for a correct choice, and nothing plus a short timeout for 
an error. Choosing Ts, when present, always yielded a reward, but the reward size was 
smaller than that for a correct response. The reward ratio was adjusted to encourage the 
monkey to choose the sure target on nearly half of all trials in order to increase the 
statistical power of analyses on neural responses. The sure bet allowed the monkey to opt 
out of the high stakes decisions about motion direction.  
 
We collected 150,558 trials (45,989 psychophysics and electrophysiology trials, and 
104,569 psychophysics trials) from two monkeys in 200 experimental sessions. Across 
the sessions, the ratio of reward size for the sure bet and the high-stakes decisions was 
0.79±0.07 (median=0.81). On 114 sessions half of the trials for each motion strength 
shared a fixed seed for the random number generator. The fixed seed guaranteed a fixed 
sequence of motion by eliminating trial-to-trial variation of the stimulus frames. We 
collected 83,809 trials in these sessions (35,023 psychophysics and electrophysiology 
trials, and 48,786 psychophysics trials).  
 
In electrophysiology sessions, we recorded the activity of single neurons in the ventral 
division of area LIP (LIPv) (S4) while the monkey performed the task. Standard 
electrophysiology techniques were used for these extracellular recordings (20, 21). LIPv 
was identified by three characteristic markers: (1) anatomical location, confirmed by 
stereotactical location and by registering the monkey’s structural MRI scans with a high 
resolution “flattened” scan distributed with the CARET software package (S5); (2) 
transition of white and gray matter during recordings; and (3) sustained activity of 
neurons in delayed and memory guided saccade tasks (S6). We screened 81 neurons with 
sustained activity in the vicinity of LIPv. All but 10 neurons were included in the 
analysis. The excluded neurons did not exhibit clear selectivity during the decision 
making. All training and data collection procedures conformed to the National Institutes 
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of Health Guide for the Care and Use of Laboratory Animals and were approved by the 
University of Washington Animal Care Committee. 
 
Analysis of behavioral data 
 
We used logistic regression to examine the effects of motion strength ( c ; range 0 to 
0.512) and duration ( t ; 0.1 to 0.9 s) on the probability of choosing Ts:  

 0 1 2
1

1 c t
sureP e            (1) 

where i  are fitted coefficients determined using maximum likelihood (binomial error).   

The same equation describes the effect of the stimuli on the probability of a correct 
choice: 

 0 1 2
1

1 c t
corP e            (2) 

 
To assess the improvement in accuracy when Ts was presented but waived, we extended 
Equation 2 as follows: 

 0 1 2 3 4 5
1 1,      T  shown

1             
0,      T  not shown

c t I cI tI s
cor

s

P e I                  
 (3) 

where I  is an indicator variable. The null hypothesis is that probability correct does not 
change in the presence of Ts ( 0 3 5: 0H    ). This analysis supports our claim that by 

waiving Ts, accuracy improved at all motion strengths and durations ( 3 =0.12±0.03, 

p=0.00026; 4 =1.28±0.14, p<10–8; 5 =0.88±0.33, p=0.008). For the last term, the 

analysis was limited to viewing durations under 300 ms, which is the range in which t has 
the largest effect on the probability correct (Fig. 1C) ( 5  was not significantly different 

from zero when longer durations were included).  
 
To make Figures 1B-C and S1, trials were divided into 10% quantiles (deciles) based on 
stimulus duration for each motion strength. The probability of choosing Ts was calculated 
for each decile. Also, we calculated the probability of choosing the correct direction 
target when the monkey did not choose the sure target. We pooled 1.6% and 3.2% motion 
coherence to avoid clutter at the lower half of the figures, and because 1.6% coherence 
was tested only on some sessions. Note that all the statistical analyses were performed on 
individual trials, not on the deciles.  
 
 
Bounded accumulation model 
 
In this model, the discrimination of rightward and leftward motion directions is based on 
integration of noisy sensory evidence by two accumulators, which correspond to the two 
direction choices. The accumulated evidence is termed decision variable. The process 
continues until one of the accumulators reaches a fixed bound, or until the stream of 
motion evidence terminates, whichever happens first. The duration of the accumulation 
process is termed decision time. On trials in which Ts is not presented, the choice is 
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dictated by the accumulator that hits the bound first, or has the larger decision variable. 
The mechanism thus resembles a race between two accumulators. We can simplify the 
process further by assuming that a piece of evidence in favor of one of the options is 
against the other option. By this assumption, the fluctuations of decision variable in the 
two accumulators become anti-correlated and the race model reduces to a one-
dimensional diffusion process in which the decision variable fluctuates in the space 
between the two decision bounds (13, 39, S7).  
 
The propagation of the probability density of decision variable over time can be 
calculated using the Fokker-Planck equation (S8): 

       
2

2

,
, , ,

p v t
v t D v t p v t

t v v


   
      

 (4) 

where  ,D v t  is the diffusion coefficient  (  , 0D v t  ) and  ,v t  the drift or advective 

coefficient. In the context of bounded accumulation models,  ,p v t  represents the 

probability of decision variable ( v ) at time t ,   ,v t  the strength of momentary 

evidence and  ,D v t  the variance of the momentary evidence. Based on previous studies 

(S9, S10) we assume that both the advective coefficient and the diffusion coefficient are 
stationary: 
 
 

,

, 1

v t kc

D v t

 


  (5) 

where k  is a constant. The boundary conditions of the Fokker-Planck equation are: 

   0,p v t v   (6) 

and 
 , 0p B t    (7) 

which enforce the constraints that the initial value of the decision variable is zero and that 
the accumulation terminates whenever the decision variable reaches one of the bounds 
( B ).  
 
In this model, there is an implicit mapping between the probability of a correct response 
and the value of decision variable. If  v t  denotes the decision variable at decision time, 

the log posterior odds is 

  
  

    

    
 
 

1 1
1 1

22 2 2

| , ||

| | , |

i i
i

i i
i

p v t S C p C Sp S v t p S
Log Log Log

p Sp S v t p v t S C p C S
 




 (8) 

where 1S  and 2S  are the two motion directions, and iC  are the set of coherences used in 

the experiment. The two motion directions happen with equal frequency, and motion 
coherence and direction vary independently. Equation 8, therefore, is reduced to: 

  
  

    

    
1

1

2 2

| ,|

| | ,

i i
i

i i
i

p v t S C p Cp S v t
Log Log

p S v t p v t S C p C





 (9) 
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where  ip C  for 0iC   is half of other coherence levels. On trials in which Ts is 

presented, the model recommends choosing Ts when the absolute value of log posterior 
odds is less than a criterion level ( ).  
 
Overall, there are three free parameters in the model: k , B , and  . k  and B  are both 
expressed in units of the diffusion coefficient, and thus have arbitrary units. We fit these 
free parameters by maximizing the likelihood of the observed frequency of correct 
responses on trials in which Ts was not shown, and the observed frequency of choosing 
Ts on trials in which Ts was shown. The parameters were then used to predict the 
frequency of correct responses on trials in which the monkey waived Ts (solid lines in 
Fig. 4E). The fits were performed on individual trials using binomial error terms. The R2 
values for the goodness of fits or predictions were computed for the data points (deciles) 
shown on the Figures 4D-E.  
 
To create the predicted trajectories of the decision variable (Fig. 4F), we performed a 
Monte-Carlo simulation of the diffusion process. The distribution of stimulus duration for 
the simulated trials was similar to that used in the experiment. To average the trajectory 
of the decision variable across the simulated trials, we assumed that the value of the 
decision variable at decision time is retained after the termination of the process and 
during the delay period that separates the motion stimulus from Ts onset.  
 
 
Analysis of neural data  
 
Peri-stimulus time histograms (PSTHs) shown in Figures 2, 4, 5, S2 and S4 were 
smoothed by convolution of neural responses with a 100 ms box car filter. However, all 
statistical analyses were performed on spike counts without any smoothing. To create 
population PSTHs in Figures 2, 4, S2, and S4 we normalized the activity of each neuron 
to the average firing rate of all trials in the 300 ms period before dots onset, that is the 
period after onset of the direction choice targets. For Figure 4F, the PSTHs were 
detrended by subtracting from each PSTH the mean of the correct Tin and Topp PSTHs. 
For the population PSTH in Figure 5 (Ts in RF), responses were normalized to the 
average firing rate in the 300 ms period after Ts onset. 
 
Single trial analyses were based on two measurements. The first was the neural activity 
calculated in a 200 ms window ending at Ts onset. The second was the rate of buildup in 
neural activity following motion onset. To calculate the buildup rate we first identified a 
relevant window for each cell, and then fit a line to neural responses in that window on 
each trial. The window started at the nadir (dip) of activity following motion onset and 
ended when the average firing rate achieved a steady level. The time of dip for each 
neuron was calculated as the time of minimum activity in 100-500 ms after motion onset 
(mean=195.8±9.4 ms). The beginning of steady level of activity was calculated for each 
cell by fitting the following ramp-to-plateau function after the dip to the average response 
for correct Tin choices.  

 0 1 min , pr t t    
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where r is the spike rate, t  is time relative to the dip, and pt  is the beginning of the 

sustained level of activity; i and pt are free parameters. pt , which defines the width of 

the window, was 299.9±7.6 ms across the population. Where necessary we trimmed the 
window to avoid overlap with the window used for the calculation of firing rate before Ts 
onset.  
 
To test whether the buildup rate of activity is modulated by coherence we used the 
following regression  

0 1r c     (10) 

where r  is buildup rate of activity for individual trials with correct Tin choices, and c  is 
motion coherence. The null hypothesis is that buildup rate is not modulated by motion 
coherence ( 0 1: 0H   ). When applied to the population of cells, buildup rates of the 

trials belonging to individual cells were first standardized by calculating z-scores 
(subtracting the mean and dividing by standard deviation). 
 
We quantified the change of activity associated with the post-decision wager by 
comparing firing rates in the 200 ms epoch before onset of Ts on trials in which the 
monkey chose or waived this option. We show means and standard errors in Figures 2E-F 
and apply 2-sided t-tests to illustrate significant cases (p<0.05). Population summary 
statistics were based on two-way ANOVA with choice and cell identity as fixed and 
random effects, respectively.   
 
We examined the variance of activity in the same 200 ms epoch before onset of Ts. If the 
mean firing rates associated with Ts choices arose from a mixture of values like those 
associated with the Tin and Topp choices, then the ratio of the variance for all Ts choices is 
predicted to be equal to the variance of the pooled Tin and Topp responses. Alternatively, if 
the mean represents the central tendency of an intermediate distribution, the variance 
should be smaller than this prediction. We performed an F-test to compare the variance of 
activity for Ts choices and the mixture of Tin and Topp choices. For this analysis, neural 
responses on individual trials were standardized for each neuron and pooled across cells. 
Similar results were obtained by comparing the geometric mean of the variance ratios 
from each neuron to unity (p=0.0004, t-test on log transformed ratios). As a further test, 
we also used Monte Carlo methods to recreate the average delay activity for Ts choices 
by sampling, with appropriate proportions, from the distribution of activity for Tin and 
Topp choices (24). The simulated distributions had larger variance than the observed 
distribution both for trials with Tin motion direction (p<0.005) and for trials with Topp 
motion direction (p<10–4).  
 
To test how the deviation of neural activity from intermediate values on individual trials 
influenced the probability of choosing the sure target we used the following logistic 
regression: 

 0 1
1

1 e z

sureP   
       (11) 

where z  is the magnitude (absolute value) of the standardized firing rate measured in the 

200 ms epoch preceding onset of Ts. The standardization was applied to each neuron 
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using the mean and standard deviation across all trials, regardless of outcome. The 
logistic regression was applied to the population of z-transformed single-trial responses. 
The fitted coefficient 1  quantifies the degree that deviation from intermediate firing 

rates affects log odds of choosing Ts. Our hypothesis is that larger deviations are 
associated with a lower probability of Ts choices ( 0 1: 0H   ). We used a similar logistic 

regression for the effect of buildup rate, using standardized values of buildup rate from 
the same trials. 
 
To test whether the single-trial effects were explained by motion strength and duration, 
we expanded Equation 11 to incorporate these terms and their interaction:  

 0 1 2 3 4
1

1 e z c t ct

sureP      
          (12) 

The null hypothesis remains ( 0 1: 0H   ).  

 
To test if buildup rate during the decision making process conveyed information about 
the choice of sure target beyond what was conferred by the neural activity prior to sure 
target onset we used the following logistic regression. 

 0 1 1 2 2
1

1 e z z

sureP    
        (13) 

where 1z  and 2z  are standardized firing and buildup rates, as above. The null hypothesis 

is ( 0 2: 0H   ).  
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Supplementary Figures 
 
 
 
 
 

 
 
Figure S1.  
Post-decision wagering reflects variability of neural signals as well as variation in 
stimulus difficulty. Here we show that the monkeys performed the task similarly on a 
subset of trials that used motion stimuli comprised of identical sequences of random dots. 
In some experimental sessions we used two trial types, which were randomly interleaved. 
For both trial types the probability of a correct response was larger when the monkey 
waived the sure target and chose the high stakes targets than when the monkey was not 
provided with the sure target. (A) Constant seed trials. An identical sequence of motion 
frames were shown for each motion strength. The trial-to-trial variability of stimulus was 
thus eliminated for these trials. (B) Random seed trials. The sequence of motion frames 
varied randomly from trial to trial.  
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Figure S2.  
The buildup of neural responses after motion onset was modulated by motion strength. 
(A) Responses of the example LIP neuron from Figure 2A-B. All conventions are similar 
to Figure 2A, except that trials are grouped by motion strength. After motion onset, the 
buildup of activity for Tin choices was larger for stronger motion stimuli. (B) Responses 
of the population of 70 LIP neurons. Same conventions as in A. The coherence-
dependent increase in buildup rate is less evident because of the abundance of trials with 
short motion durations combined with variation in latency and magnitude of the buildup 
across neurons. These limitations are addressed in the next panel. (C) Standardized 
buildup rate across the population of neurons as a function of motion strength. Correct Tin 
choices, and all Tin choices for 0% motion strength, are included in this analysis. Buildup 
rates were calculated for single trials, as described in Methods, and then expressed as 
deviation from the mean in units of standard deviation. This procedure (standardization) 
was performed for each cell before pooling the data. The increase in buildup rate is well-
described by a line fitted to the data. Error bars show SEM.  
 

Motion strength (%coh) 
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Figure S3. 
Decision time is limited by a bounded evidence accumulation mechanism. The bounded 
accumulation model asserts a mechanism for terminating decisions. In reaction time 
tasks, this explains the relationship between decision speed and accuracy. In an 
experiment like ours, in which the stream of evidence is controlled by the experimenter, 
the mechanism asserts that some decisions terminate covertly, despite the availability of 
additional information from the stimulus. After the accumulated evidence reaches the 
bound, the incoming evidence would be largely ignored. Therefore, the initial part of the 
stimulus must have a larger influence on the monkey’s choice. We performed a 
psychophysical reverse correlation analysis to test this assertion (S11, S12). On each trial, 
a particular random dot stimulus gave rise to a noisy stream of motion information, 
comprised of fluctuations in the magnitude and sign of evidence. These fluctuations were 
quantified by calculating the motion energy (20, S13). Positive motion energy indicates 
rightward motion for 0% coherence and motion in the ‘correct’ direction for non-zero 
coherences. The motion energy profiles for rightward and leftward choices (0% 
coherence, A) and correct and error choices (non-zero coherences, B-D) show a clear 
separation in support of the choice. The separation was clearest in the first ~400 ms, and 
overlapped at later times, consistent with a covert decision termination mechanism.  Only 
trials with stimulus durations of 400 ms or larger contributed to this analysis. 
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Figure S4.  
The level of activity for Ts choices was modulated by motion strength. Population 
average responses from 70 LIP neurons are grouped by motion strength. One of the high 
stakes (direction choice) targets was in the RF of the recorded neurons. Plotting 
conventions are identical to Figure 2D. Coherence levels are paired for illustration 
purposes. The same trend exists for individual coherence levels. 
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Table S1. Fit parameters (mean±SE) of the bounded accumulation model.  
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k  0.255±0.002 

B  39.4±10.0 

  0.591±0.005 


