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Changes of mind in decision-making
Arbora Resulaj1,2, Roozbeh Kiani3, Daniel M. Wolpert1 & Michael N. Shadlen3

A decision is a commitment to a proposition or plan of action based
on evidence and the expected costs and benefits associated with the
outcome. Progress in a variety of fields has led to a quantitative
understanding of the mechanisms that evaluate evidence and reach
a decision1–3. Several formalisms propose that a representation of
noisy evidence is evaluated against a criterion to produce a
decision4–8. Without additional evidence, however, these formalisms
fail to explain why a decision-maker would change their mind. Here
we extend a model, developed to account for both the timing and the
accuracy of the initial decision9, to explain subsequent changes of
mind. Subjects made decisions about a noisy visual stimulus, which
they indicated by moving a handle. Although they received no addi-
tional information after initiating their movement, their hand
trajectories betrayed a change of mind in some trials. We propose
that noisy evidence is accumulated over time until it reaches a
criterion level, or bound, which determines the initial decision,
and that the brain exploits information that is in the processing
pipeline when the initial decision is made to subsequently either
reverse or reaffirm the initial decision. The model explains both
the frequency of changes of mind as well as their dependence on
both task difficulty and whether the initial decision was accurate
or erroneous. The theoretical and experimental findings advance
the understanding of decision-making to the highly flexible and
cognitive acts of vacillation and self-correction.

Decision-making spans a vast range of types and complexity, from
choosing your partner or deciding whether to dive left or right to save a
goal to simply deciding when to lift your finger. Studies of simple
perceptual decisions have provided insight into the neurobiological
mechanisms responsible for decision-making in both monkeys and
humans (for reviews, see refs 1–3, 10). These studies often require a
binary choice between two possible stimulus categories, such as leftward
or rightward motion. Psychophysical and neural data1 support models,
termed drift–diffusion6, random walk5,7 and race8, in which a decision is
made when the accumulated noisy evidence (decision variable) reaches
a criterion level, termed a decision bound. Such an accumulation
process explains both the accuracy of decisions over a range of difficulty
levels as well as the time required to make the decisions9. These models
are naturally viewed as an extension of signal detection theory and
Bayesian inference to streams of data over time4,11. One important
limitation of the models is that they fail to explain why a decision-maker
might change their mind after an initial decision has been taken. In
some instances, such changes can lead to the correction of an initial
error12,13. Here we develop a task in which we can monitor changes of
mind. We then extend the bounded-diffusion framework to explain
both the frequency and the pattern of changes of mind.

Three naive participants observed a moving random-dot stimulus
and made decisions about the direction of motion (leftward or
rightward), which they indicated by moving a handle to either a
leftward or rightward target (Fig. 1a). Critically, the moving dots
were extinguished as soon as the subjects initiated their movement

(Fig. 1b) and, hence, subjects could not acquire new evidence during
their movement. The choice at initiation (initial hand trajectory) and
reaction times as a function of task difficulty (coherence of dot
motion) were explained by a model of bounded drift–diffusion
(Fig. 2, black curves) consistent with previous studies in humans
and monkeys1,9,14. According to this model, evidence is accumulated
until it reaches one of two bounds (corresponding to leftward and
rightward decisions), which determines the choice and decision time.

Although no further visual information was available after move-
ment initiation, the hand trajectories (Fig. 1c) gave a clear indication
that in some trials observers changed their minds. That is, subjects
generated a curved hand path that initially was on course to reach one
target, but changed direction during the movement to finish at the
other target. Although some changes of mind resulted in errors, the
majority corrected an initial error. Changes of mind reliably
improved accuracy (Fig. 2, top row: black and red circles correspond
to the initial and final choices, respectively) for all three subjects by
improving sensitivity to motion (P , 0.006 for each subject).
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Figure 1 | Experimental set-up. a, Schematic of the visual display
(rectangle). Subjects held the handle of a robotic interface (filled circle,
shown here in the ‘home’ position) and moved to either a leftward or a
rightward circular target depending on the perceived motion direction of a
central random-dot display. A mirror system prevented subjects from seeing
their arm. b, The time course of events that make up a trial. Each trial started
when the subject’s hand was in the home position. After a random delay, the
dots became visible and the subject could view the moving dot stimulus for
as long as they needed (up to 2 s). Subjects indicated the direction of dot
motion by moving to the leftward or rightward target. As soon as the subjects
moved from the home position, the motion stimulus vanished. The trial
ended when the subject reached one of the two targets. c, Sample hand
trajectories from one subject. Most trajectories extend directly from the
home position (bottom circle) to one of the choice targets. In a fraction of
trials, the trajectories change course during the movement, indicating a
change of mind.
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The observation is seemingly paradoxical. If there is information
available to make a better decision, it might be expected to influence
the initial decision. Every normative, ‘ideal-observer’-based theory of
decision-making would posit the decision as an inference made on
the available evidence. The paradox is resolved if the decision-maker
does not use all of the available evidence to make the initial choice but
can tap into further information in the period between commitment
to the initial response and termination of the movement.

Although the stimulus vanishes upon movement initiation, there
is information in the processing pipeline that is potentially available
to the decision-maker after movement initiation. Sensory- and
motor-processing latencies ensure that not all of the information
available from stimulus onset to movement initiation contributes
to the decision. The sum of these latencies, termed the non-decision
time (tnd), was estimated to be 300–400 ms in our experiments
(Supplementary Table 1 and Methods). Single-unit recordings from
the lateral intraparietal area of the macaque in eye-movement ver-
sions of this task suggest that the non-decision time includes sensory
and motor delays of around 220 ms and 80 ms, respectively15,16. We
proposed that the unused information could be processed after the
brain has committed to an initial choice, thereby requiring an
extension of the bounded-diffusion mechanism that includes post-
initiation processing.

An analysis of the motion evidence leading to the subjects’ choices
supports this hypothesis. Each stimulus was a noisy sequence of
random dots, which led to rapid fluctuations in the motion evidence,
as quantified by ‘motion energy’16,17 favouring left or right. For each
trial, we removed the average motion energy associated with that
motion strength and direction, leaving only the moment-to-moment
fluctuations about the mean. We then averaged those residuals to
look for evidence in the stimulus in support of the subjects’ initial
choice. The stimulus fluctuations immediately after stimulus onset
supported the initial choice (Fig. 3a, left-hand blue curve: average
over first 150 ms is positive; P , 0.0001), whereas the fluctuations in
the final few hundred milliseconds had little bearing on the choice.
For each subject, we identified the time point at which the average

came within 1 s.e. of zero (arrows), thus providing an empirical
estimate of non-decision time. The motion-energy filtering induces
a delay of 50–150 ms (Fig. 3a, inset). Taking this into account, the
initial choices depend on the earliest information in the stimulus, but
ignore an epoch on the order of tnd.

The pattern was different for the subset of trials in which there is a
change of mind. The early information from the stimulus provided
weaker support for the initial choice (Fig. 3a, left-hand red trace) and
exhibited a negative trend near the time of initiation (Fig. 3a, right-
hand red trace), in support of the final, changed decision. The motion
energy in this later epoch was significantly more negative relative to
that in the remaining trials (P , 0.0001). The observation that
motion energy supports both the initial and final choices provides
evidence against two main alternatives to post-initiation processing:
(1) change of decision based on recall and/or reconsideration of
evidence acquired before initiation18, and (2) correction of an initial
motor error perhaps due to confusion about the stimulus–response
mapping12. The analysis instead supports a non-decision time in
which information from the stimulus arrives too late to affect an initial
decision but is present to refine it after the brain has committed to a
particular response and action.

We next considered how this extended processing could explain
the pattern of changes of mind in the data. In particular, we wished
to explain the proportion of changes to correct and to erroneous
choices as a function of motion strength (Fig. 3b, red and black
symbols, respectively). A seemingly optimal solution to the problem
is to suppose the subject wishes to use changes of mind to maximize
the percentage of correct final choices. Then the subject ought to
continue to accumulate evidence about direction until there is no
more to be had (that is, until time tnd) and to decide in favour of the
more likely direction. This formulation holds regardless of the
trade-off between speed and accuracy underlying the initial choice.
This idea fails to explain our findings: it predicts too many changes
and it would defer them to the end of the evidence stream, which is
clearly not the case (for example, early changes of mind, Fig. 1c).
Because the subject must complete a hand movement, the optimal
solution is likely to incorporate motor costs (energy) associated with
larger corrections nearer the end of the movement. This idea can be
realized by incorporating new bounds in the post-decision period to
change or reaffirm an initial decision based on some criterion,
thereby allowing changes to occur earlier in the movement. We
considered a variety of models (Methods). The most parsimonious
of these is illustrated in Fig. 3c. In this model, once the initial bound
has been reached and a decision made, evidence continues to accu-
mulate until it either reaches a new ‘change-of-mind’ bound or a
time deadline terminates post-initiation processing. The decision
rule is to change only if the accumulated evidence reaches the
change-of-mind bound and to reaffirm otherwise. The offsets of
the new bound and the deadline (two parameters) were fitted to
account for the changes of mind as a function of coherence (Fig. 3b,
curves).

For all three subjects, the model fits imply that upon termination
of the initial decision, the subjects set a new bound at a level that
would necessitate a reversal of the sign of the accumulated evidence.
The amount of evidence required for a subject to change their mind
(BD, Supplementary Table 1) differed by ,30% across subjects,
which explains the variation in the pattern of their changes. In all
cases, the existence of this change-of-mind bound led to a significant
improvement in the fits, in comparison with using all the available
information (that is, no bound and choice based on the sign of the
decision variable after tnd; P , 0.003 for all subjects, likelihood-ratio
test). The deadline produced by the fit suggests that subjects avail
themselves of most of the information in the processing pipeline. The
model captures the complex dependence of post-initiation changes
on both the motion strength and the initial decision (R2 5 0.63–0.85
and 0.76–0.99 for changes to correct and incorrect choices, respec-
tively). Changes of mind were most frequent at intermediate motion
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Figure 2 | Accuracy improves through changes of mind. Data are from
three subjects (S, A and E). The top row shows that the probability of a
correct decision at initiation (black) is lower than at termination (red) for
almost all motion strengths. The bottom row shows that reaction times are
longer for weaker motion strengths. Solid curves are fits to the data of the
bounded-accumulation model (fraction of variance explained by the model
fit, R2, for subjects S, A and E are respectively 0.96, 0.95 and 0.98 for initial
decision, 0.98, 0.96 and 0.99 for final decision, and 0.92, 0.74 and 0.87 for
reaction time). In this model, processing after initial commitment leads to an
improvement in performance during the post-initiation phase. Error bars,
s.e.m.
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strengths when the initial choice was erroneous. The model offers an
intuitive explanation for this. Viewed as a decision process beginning
at the initial decision bound, there is a higher probability of reaffirm-
ing the initial choice, because the accumulated evidence is far from
the change-of-mind bound. A change of mind therefore requires
strong evidence in the short time available for post-initiation proces-
sing to move the accumulated evidence to the change-of-mind
bound. Such strong evidence ought to arrive when the initial choice
is an error and when the motion is strong. However, if the motion is
very strong, initial errors are rare.

Our central finding is that the same data stream may be sampled at
different moments to support different decisions and, hence, a
change of mind. As a further test of this idea, we placed the timing
of the initial decision under experimental control. This allowed us to
isolate changes of mind from the strategies governing the trade-off of
speed and accuracy of initial decisions in the reaction-time experi-
ment. Instead of responding when ready, subjects were trained to
time the initiation of their movement so that it coincided with an
expected auditory beep. The stimulus motion began at a random
time 200–2,000 ms (mean, 440 ms) before the beep and ended at
the beep or at movement initiation, whichever occurred first
(Methods). This experiment therefore tested whether our suggested
framework generalizes to a situation in which the time of the initial
choice is determined by an exogenous cue. The results of this experi-
ment, which are summarized in Supplementary Figs 1–3, confirm the
finding that subjects base their initial choice on early evidence but can
avail themselves of additional evidence in the processing pipeline to
revise this choice. These data also conform to a variant of the
bounded-accumulation mechanism with post-initiation processing
(Methods and Supplementary Figs 2 and 3).

We expect the change-of-mind mechanism to apply under a wide
variety of conditions if there is time pressure to respond. When two
of our subjects were instructed to perform the reaction-time experi-
ment more slowly, their initial decisions were more accurate and
there were fewer changes of mind (data not shown). The pattern
was explained by the same model with higher initiation bounds9.
Also, because in our study the subject must complete an arm move-
ment, the optimal solution is likely to trade off accuracy against
motor costs (energy) associated with larger corrections nearer the
end of the movement. Determining the optimal bounds for such a
trade-off will require the coupling of concepts derived from theories
of optimal feedback control19 and decision-making models. We sus-
pect that more complex situations, for example in which movements
must be timed more precisely or when a correction is more costly,
might necessitate both a reaffirmation bound and bounds whose
heights vary over time.

Our proposed mechanism cannot explain all changes of mind. For
example, it cannot explain corrections of initial errors that arise from
confusion about stimulus–response associations12. Furthermore, a
change that depends on retrieval of information from memory or
incorporation of a new decision policy (for example values) would
require elaboration of the model. Presumably these types of vacilla-
tions could be based on more complex processes that involve memory
retrieval or application of a new criterion on a stored decision variable.

Advances in understanding the neurobiology of decision-making
have benefited from simple perceptual tasks18,20,21, but the same
principles appear to underlie decisions related to foraging2, gamb-
ling22, social selection23 and probabilistic reasoning24. The common
principle is that the representation of information bearing on choice
is imperfect, thus inviting the application of some criterion against
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Figure 3 | A bounded-accumulation model of decision-making with post-
initiation processing explains changes of mind. a, Influence of motion-
energy fluctuations on initial and final decisions. Data are shown for all the
trials (blue) and the subset of trials with a change of mind (red) aligned at
stimulus onset (left) and movement onset (right). Motion-energy
fluctuations were obtained by applying a filter to the sequence of random
dots shown in each trial and subtracting the mean for all trials sharing the
same motion strength and direction (Methods). The residual fluctuations
are designated positive if they support the direction of the initial decision.
Shading indicates s.e.m. Arrows indicate the time preceding movement
initiation at which the average motion-energy fluctuations for each subject
falls to within 1 s.e. of zero. Inset, impulse response for the filter used to
calculate motion energy. a.u., arbitrary units. b, The model explains the
probability of changes of mind from incorrect to correct choices (model, red
curves; data, red symbols) and changes of mind from correct to incorrect
choices (model, black curves; data, black symbols) as a function of stimulus

coherence. Error bars, s.e.m. c, Information flow diagram showing visual
stimulus and neural events leading to a decision and a possible change of
mind. The example illustrates a rightward motion stimulus that gives rise to
an initial incorrect leftward choice with reaction time around 500 ms. The
visual stimulus gives rise to a decision variable (blue trace) that is the
accumulation of noisy evidence. This governs the initial choice and decision
time. The initial decision is complete when a ‘Right’ or ‘Left’ bound is
crossed (that is, 6B of evidence has accumulated). Data from neural
recordings15,16 suggest that the delay from motion onset to the beginning of
the accumulation (ts) is around 200 ms, and the delay from the initial
decision to movement initiation (tm) is around 80 ms. The time of the
termination is around the mean decision time for the three subjects. Further
accumulation takes place on the evidence still in the processing pipeline; if
the accumulated evidence reaches the opposite change-of-mind bound then
the decision is reversed (red), and if the deadline is reached then the decision
is confirmed (green).
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which to judge the evidence. The class of bounded-diffusion
models5–7,25,26 extends this theory of signal classification4 to data
streams and thus incorporates time costs as well27,28. An unexpected
virtue of such models demonstrated by our experiment is that a part
of the data stream that is not used to make the decision can none-
theless support revision after a response is initiated.

This formalism provides a view of decision-making in which subjects
can exploit the expectation that late-arriving information may or may
not be useful to refine a decision or action. We suspect that when a
change of decision is costly, energetically or otherwise, subjects will
naturally tend to shun this strategy and opt for longer initial decision
times. A change is precluded when an action is ballistic, for instance
when a subject makes an eye movement to a choice target9,15. In these
instances, a change of mind can only lead to a post-decision regret29 or
possibly a learning signal even in the absence of overt feedback. On the
other hand, a variety of complex motor sequences might benefit from
early initiation premised on the expectation of additional information
that is in the pipeline. It is well known that the initiation and final
specifications of a movement can be dissociated in time30. What we
have shown here is that when these processes act on the same data
stream, they can lead to a change in a decision. We speculate that a
common neural mechanism explains refinement of a movement after
initiation and what we experience cognitively as a change of mind about
a proposition.

METHODS SUMMARY
Three naive subjects performed the main experiment. The local ethics committee

approved the protocol. Subjects moved a handle in the horizontal plane. A mirror

overlaid virtual images from a computer monitor onto the plane of the move-

ment. The hand position was displayed as a small blue circle. After a random delay,
a dynamic random-dot stimulus appeared (Fig. 1). In each trial, the direction of

motion was randomly chosen to be leftward or rightward. Task difficulty was

varied randomly by controlling the fraction of coherently moving dots. The

subjects were instructed to judge the net direction of motion as quickly and as

accurately as they could, and to move the handle to either a leftward or rightward

target. The motion stimulus was extinguished when the movement was initiated.

The trial ended when the subject reached one of the targets. Subjects performed an

initial training session of at least 500 trials followed by 1,500 test trials.

We recorded the hand trajectories at 1,000 Hz. For each trial, we measured the

reaction time and the final target selection. Normally hand movements for easy

trials (high coherence) were straight to the target. A change of mind was reflected

in a trajectory that initially travelled towards one target but ended at the other.

We calculated the area between the hand path and the line from the starting

position to the midpoint between the two targets. A change of mind was detected

if the area swept out by the hand on the side opposite the final chosen target

exceeded 0.1 cm2. This criterion was based on a control experiment using 100%

coherent motion. We were therefore able to determine for each trial the choice at

both initiation and termination of the movement.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Behavioural task. Four naive subjects (three male and one female) provided

informed consent and participated in the experiment. The local ethics committee

approved the protocol. Three subjects performed each of the reaction-time and

cued-movement experiments (two subjects, S and E, performed both, with the

reaction-time experiment first). Subjects were seated and used their preferred

hand to hold the handle of a vBOT manipulandum31 that was free to move in

the horizontal plane (Fig. 1a). Subjects were prevented from seeing their arm by a

mirror that was used to overlay virtual images of a video display (updated at

75 Hz) onto the plane of the movement. A chin- and headrest ensured a viewing

distance of 40 cm. The hand position was displayed as a small blue circle (radius,

0.5 cm).

The time course of a trial in the reaction-time experiment is shown in Fig. 1b. A

trial began when the subject’s hand was in the home position (circle of radius 1 cm;

Fig. 1a). After a random delay, sampled from a truncated exponential distribution

(range, 0.7–1.0 s; mean, 0.82 s), a dynamic random-dot stimulus appeared at the

centre of the screen within a circular aperture subtending 5u of visual angle.

The motion stimulus is described in detail in previous studies15. In each trial,

the direction of motion was randomly chosen to be leftward or rightward. The

stimulus density was 15.6 dots deg22 s21. Dots were displayed for one video frame

and then either replaced at a random position or displaced to the left or right three

video frames (40 ms) later. This displacement would produce a speed of 7.1u s21.

Thus the positions of the dots in frame four, say, were correlated only with

the displaced dots in frames one and/or seven but with none of the dots in frames

two, three, five and six. The probability that each dot would be displaced as

opposed to randomly replaced, termed the per cent coherence, determined the

task difficulty and was selected randomly from the set (0%, 3.2%, 6.4%, 12.8%,

25.6%, 51.2%).

The subjects were instructed to judge the direction of the moving random dots

as quickly and as accurately as they could, and to reach to a corresponding

circular target (one on the left and one on the right; radius, 1.5 cm; 20 cm from

the starting position and 28u from the midline; Fig. 1a). Critically, when the

movement was initiated—that is, the hand crossed the boundary of the home-

position circle—the random-dot stimulus was extinguished. Subjects were

required to reach the target with a movement duration of 500 6 200 ms. The

trial ended when the subject reached one of the targets. Subjects were provided

with visual feedback of whether they had made the correct choice (for the 0%

coherence trials, half of the trials were randomly designated ‘correct’). Subjects

were instructed to maintain fixation throughout at a small cross in the centre of

the dot aperture—the targets were large enough that they could be easily reached

using peripheral vision. Subjects performed an initial training session of at least

500 trials followed by 1,500 test trials.

In the cued-movement task, subjects heard five beeps equally spaced in time

(500-ms spacing) and were required to initiate movement on the fourth beep and

reach the target on the fifth beep (Supplementary Fig. 1a). Random-dot motion

began at a random interval before the fourth beep (truncated exponential distri-

bution: range, 0.2–2 s; mean, 0.44 s). The motion display was extinguished on the

fourth beep or at the time of movement initiation if the subject slightly anticipated

the beep. Feedback was provided to maintain movement initiation and termina-

tion within 6100 ms of the fourth and fifth beeps, respectively. Again, subjects

were given feedback of whether they had made the correct choice. Subjects

performed an initial training session of 500 trials followed by 2,000 test trials.

Data analysis. We recorded the hand trajectories at 1,000 Hz. For each trial, we

quantified the reaction time (time to movement initiation from start of motion

stimulus) and the final target selection. In addition, we developed a measure,

based on the hand trajectories, of whether subjects had changed their decision

during the movement. Normally hand movements for easy trials (high coherence)

were straight to the target (Fig. 1c). A change of mind was reflected in a trajectory

that initially travelled towards one target but ended at the other. We calculated the

area between the hand path and the line from the starting position to the bisector

of the two targets. A change of mind was deemed to have occurred if the area swept

out by the hand on the side opposite the final chosen target exceeded 0.1 cm2 and

the point of maximum horizontal deviation was outside the home position. This

criterion was chosen on the basis of a control experiment with two of our subjects

using the reaction-time condition but with 100%-coherent motion stimuli. We

expected to see few, if any, changes of mind under this condition and in fact

observed two change-of-mind trials out of 400, both of which were obvious lapses

with swept areas at least three times larger than the criterion, suggesting that our

method of determining changes of mind is conservative. We were therefore able to

determine for each trial the choice at both initiation and termination of the

movement.

Modelling. For the reaction-time experiment (Figs 2 and 3), we adapted a

bounded-accumulation model (Fig. 3c) to explain the initial- and final-choice

frequencies (Fig. 3b). We first explain the model for the initial choices and then

expand it to explain changes of mind.

For the initial choices, the model posits that evidence accumulates from a

starting point, y0, until it reaches an upper or lower bound (6B), which deter-

mines the initial choice and decision time. The increments of evidence are idea-

lized as normally distributed random variables with unit variance per second and

mean m 5 kC 1 m0, where C is signed motion strength (a positive value corres-

ponding to rightward motion and negative value corresponding to leftward

motion); k, B, y0 and m0 are free parameters. The parameters B and k explain

the trade-off between the speed and the accuracy of the initial choices; m0 and y0

are respectively drift and starting-point offsets, which explain bias for one of the

choices. The bias terms were not necessary for all subjects (Supplementary

Table 1).

This formulation leads to the following simplification32, which may help to

provide an intuition for the effect of motion strength on initial choice and

reaction time. If y0 5 0, the probability of a rightward initial choice is

Pright~½1z exp ({2mB)�{1

and the mean decision time is

td~
B

m
tanh (mB)

The reaction time incorporates additional latencies from stimulus onset to the

beginning of the bounded-accumulation process and from the termination of

the process to the beginning of the motor response. The sum of these latencies,

the non-decision time tnd, is an additional parameter of the model such that the

measured reaction time is td 1 tnd, which we set for each direction choice.

Because the stimulus duration in each trial equals the reaction time, there is

additional evidence from the stimulus that is potentially available for processing

after the brain has committed to an initial choice. The model incorporates this

additional information as follows. When the initial decision ends, the accumula-

tion continues (from 6B) until either a second, post-initiation change-of-mind

bound is crossed, in which case the decision is reversed, or a temporal deadline is

exceeded, in which case the initial decision is reaffirmed (Fig. 3c). The height of

this new bound was offset by BD from the initiation bound. A value of BD 5 B

would imply that a change of mind occurs when the evidence changes sign, and a

value of BD 5 2B would imply that a change requires an amount of net evidence

represented by the initial bounds. The values for our subjects were between B and

2B.

The fits to the initial choices and reaction times provide the sensitivity para-

meter (k), initial bounds (B) and non-decision times (tnd) used in the post-

initiation analyses. We then considered a series of plausible models for the

post-initiation phase. These models were intended to explain the observed initial

and final choices (bivariate observations: left–left, left–right and so on) given

fixed values for k, B and tnd. The strategy ensures that all comparison models are

on equal footing and that the number of parameters for post-initiation is small.

We compared an ‘optimal’ model using all available evidence (no additional

degrees of freedom (d.f.)), a single flat change-of-mind bound (d.f. 5 1), a flat

change-of-mind bound with a deadline (as described above; d.f. 5 2), flat

bounds for change of mind and for reaffirmation (d.f. 5 2), and variants of these

models with quadratic collapsing bounds (an extra 1–2 d.f. to parameterize the

collapse). We used a likelihood-ratio test for nested models and supported these

comparisons using the Bayes information criterion33. On the basis of these

comparisons, we adopted the simplest model that accounted for all the subjects’

data (Fig. 3c): one with a single change-of-mind bound and a cut-off that would

censor late information acquired during tnd. The parameters for this model are

shown in the final two rows of Supplementary Table 1. All fits were performed

using maximum-likelihood methods. Model choice probabilities and reaction-

time distributions were derived from numerical solutions of Fokker–Planck

equations for the bounded-diffusion process34.

Although it appears that a large number of parameters were used to model the

initial and final choices, the strategy is conservative and intuitive. We used six

parameters for the fits to the initial choices and reaction times to ensure that the

estimates of parameters that affect the post-initiation phase (k, B and tnd) were as

accurate as possible. A model with just three parameters gives acceptable fits for

the initial choices and reaction times for all three subjects, but the additional

parameters explain the small biases in two of the subjects and the 4–10-ms

difference in tnd for leftward and rightward choices. Although several of these

terms have negligible effects for one or more subjects (Supplementary Table 1),

they produce more accurate estimates of k, B and tnd. As noted above, the simple

two-parameter model used to fit the post-initiation data was supported by an

extensive model comparison. To perform this model comparison with as much

power and sensitivity as possible, it was necessary to place all models on equal

footing by supplying the best possible values for the inherited parameters (k, B
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and tnd). In particular, we did not want to justify a more complicated model (for
example one with collapsing bounds) simply because the additional degrees of

freedom could explain residual error in k and B. Our strategy is conservative in

that it tends to reduce the explanatory power of more complex models for

changes of mind.

We also performed a cross-validation analysis to ensure that the large number

of parameters in our fit to the reaction-time data did not lead to overfitting. We

split each subject’s data set into two equal halves (random permutation of trials

at each motion strength) and fitted each separately. We used the fits from one

half to predict the other half of the data. The cross-validation fits, goodness of fit

and parameter estimates are shown in Supplementary Fig. 4 and Supplementary

Tables 3 and 4. The similarity of the predictions and fits provides reassurance

that the model is not overparameterized.

A simpler version of the model was used to fit data from the cued-movement

experiment (Supplementary Figs 2 and 3). Here the non-decision time, tnd,

delimits the portion of the data stream available for the initial choice. In a trial

in which the stimulus is displayed for a time tstim, subjects can use td 5 tstim 2 tnd of

the data stream (or no information if the stimulus duration is shorter than the non-

decision time) to determine their initial choice, and a further tnd (or the stimulus
duration if shorter than tnd) to potentially revise their decision. Put simply, the

initial choice is governed by the sign of the decision variable after td of diffusion,

whether or not it has terminated. Post-initiation processing occurs on the remain-

ing data stream until either the left or right choice bound is reached. The same

symmetric bounds were used before and after initiation. A key difference from the

reaction-time experiment is that once the accumulated evidence has reached a

bound, the diffusion process terminates and there is no opportunity for a change of

mind. Thus, only non-terminated decisions after time td are eligible for a change of

mind. This seems sensible because, unlike in the reaction-time experiment, the

subject does not choose the time of initiation. Termination of the process is

tantamount to accepting that the level of evidence is sufficient for a choice.

Model fits (for k, B and tnd, see Supplementary Table 2) were obtained using

maximum-likelihood methods. Because initiation was timed to coincide with an

external beep in this experiment, the main effect of the bounds was to curtail the

improvement in accuracy that would be expected for perfect integration for long

times td (ref. 16). The initial- and final-choice probabilities were derived by nume-

rical solution of Fokker–Planck equations for each trial, using the same stimulus

durations as in the data set.
Statistical analysis. Unless otherwise stated, P values are based on t statistics

constructed from parameter estimates and their associated standard errors. We

calculated the standard errors by using the inverse Hessian from maximum-

likelihood fits wherever possible, or a bootstrap procedure35 when the numerical

solution of the Fokker–Planck equation did not support accurate calculation of

the Hessian. For the fraction of tnd, we report the 95% confidence interval

(method of fiducial limits36, likelihood-ratio test) because this parameter is

bounded by zero and one. The R2 values accompanying the model fits were

calculated as one minus the fraction of unexplained variance for the data points

displayed in the graphs. To evaluate the differences between initial- and final-

choice probabilities, we did not rely on the model in Fig. 3 but instead performed

logistic regression. Accordingly, the probability of choosing right is given by

Pright~ 1z exp {b0{b1C{b2I{b3ICð Þ½ �{1

where C is the signed motion strength, I is an indicator variable (zero for initial

choice and one for the final choice) and bi are fitted coefficients. To test for

improved sensitivity (accuracy) with changes of mind, we evaluated the null

hypothesis {H0: b3 # 0}. An alterative formulation—probability correct as a func-

tion of unsigned motion strength—confirmed the statistical significance of this

analysis as well as the analysis of the cued-motion experiment.

For the motion-energy analyses, we extracted a time series from the sequence

of random dots shown in each trial by applying a filter for rightward and leftward

motion with passband centred at 1.0 cyc deg21 and 7.1 Hz, thus matching the

speed and dot displacement in our stimulus (for details, see refs 16, 17). The

difference in these time series represents momentary evidence in favour of one or

the other choice. To combine data across trials, we removed the average motion

energy associated with each trial’s motion strength and direction. We then

applied a sign convention so that positive fluctuations are in the direction of

the subject’s initial choice. The graphs in Fig. 3a and Supplementary Fig. 2b show

these averaged residuals, time-locked to either stimulus onset or movement

initiation.

For the statistical analysis of the motion energy time-locked to movement

initiation, we used the data from all trials (blue curves) to identify the point in

time (for each subject) at which stimulus motion fluctuations no longer influ-

ence the initial choice, using an arbitrary value of 1 s.e. from zero. This procedure

gives a model-free estimate of tnd. We analysed the motion energy from the

change-of-mind trials from this time until movement initiation. To test whether

the total motion energy in an epoch differed significantly from zero, we applied a

permutation test (randomization of the sign of motion energy in each trial)35. To

compare the motion energy in change-of-mind and reaffirmation trials, we

applied a bootstrap procedure. We calculated the total motion energy in the

change-of-mind trials using the epoch defined above and compared this with the

distribution of values obtained in randomly resampled trials without change of

mind over the identical epochs. This bootstrap comparison compensated for a

lack of power due to there being relatively few change-of-mind trials (for

example, neither of the trends in the left-hand red curves of Fig. 3a and

Supplementary Fig. 2b are significantly different from zero).
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