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SUMMARY

Accurate decisions require knowledge of prior prob-
abilities (e.g., prevalence or base rate), but it is un-
clear how prior probabilities are learned in the
absence of a teacher. We hypothesized that hu-
mans could learn base rates from experience mak-
ing decisions, even without feedback. Participants
made difficult decisions about the direction of dy-
namic random dot motion. Across blocks of 15–42
trials, the base rate favoring left or right varied. Par-
ticipants were not informed of the base rate or
choice accuracy, yet they gradually biased their
choices and thereby increased accuracy and confi-
dence in their decisions. They achieved this by up-
dating knowledge of base rate after each decision,
using a counterfactual representation of confidence
that simulates a neutral prior. The strategy is
consistent with Bayesian updating of belief and
suggests that humans represent both true confi-
dence, which incorporates the evolving belief of
the prior, and counterfactual confidence, which dis-
counts the prior.

INTRODUCTION

Accurate decisionmaking relies on both evidence bearing on the

choice at hand and prior knowledge about the statistical regular-

ities bearing on the possible options. In some instances, we learn

these regularities through education (e.g., disease prevalence

based on decisions of experts), but more often such knowledge

is acquired over time through decisions wemake ourselves. This

poses a problem because without an omniscient teacher, our

decisions can be inaccurate, which limits our ability to update

our beliefs. The problem is compounded because the decisions

we make may be affected by our evolving belief of the statistical

regularities, thereby biasing our decisions, which could in turn

affect how we update our belief about the regularities.

As an example, consider you are working on a production line

determining whether tomatoes arriving one at a time on a
Neuron 99, 1–15, Se
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conveyor belt are ripe and ready to ship or unripe and need to

be held back. Some are obviously red and ripe and others are

clearly green and unripe, but there are others on the border

that will be harder to judge. Each crate comes from a different

supplier and will likely have a different proportion of unripe to-

matoes. If you knew each crate’s proportion of unripe tomatoes

(the base rate), it would help you sort the tomatoes. This is an

example in which one is learning a prior (base rate) without a

teacher or confirmation about ground truth.

One possibility is that one would ignore the base rate in this

setting, but that would be unwise when confronted with an

ambiguous tomato. It makes more sense to estimate the base

rate from one’s experience. One could simply use the proportion

of decisions of unripe as the estimate of the base rate. However,

this would give equal weighting to tomatoes judged as clearly

unripe and those on the borderline. An alternative might be to

use a measure of confidence in determining the base rate, but

this invites another challenge. If one uses the base rate to decide

ripeness, this will affect the tally and potentially bias the estimate

of the base rate itself.

This simple example illustrates the complexity of doing infer-

ence in a world in which one is simultaneously learning a model

and applying it. It arises in medical decision making (Medin and

Edelson, 1988; Goldberg, 1970), weather prediction (Knowlton

et al., 1994; Yang and Shadlen, 2007), and other inference prob-

lems that benefit from experience but for which feedback about

ground truth is unavailable on a useful timescale. It has been

shown that people are able to estimate base rates from a

sequence of observations (Phillips and Edwards, 1966; Estes,

1972; Peterson and Beach, 1967) to develop a bias that serves

as prior knowledge in subsequent interactions with the environ-

ment (Anderson and Carpenter, 2006; Manis et al., 1980) and

even use these observations to infer changes in the state of

the environment (Summerfield et al., 2011; Behrens et al.,

2007; Meyniel et al., 2015; Purcell and Kiani, 2016; Nassar

et al., 2010; Rapoport, 1964; Carpenter and Williams, 1995). In

these cases, the observations that inform the prior are clearly

discernible (e.g., target reached/not reached) or are accompa-

nied by explicit feedback. For example, if the sorter were to taste

each tomato, the ground truth could be known, but there would

be no tomatoes shipped.We hypothesized that in the absence of

explicit feedback, decision confidence guides the acquisition

of prior probability and does so in accordance with Bayesian
ptember 5, 2018 ª 2018 The Authors. Published by Elsevier Inc. 1
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updating. We build on recent progress in the understanding of

confidence in simple perceptual decisions.

To study the role of confidence in the acquisition of prior prob-

ability, we designed a task in which human participants made a

sequence of binary decisions in the presence of a concealed

base rate that favored one of the alternatives. The decisions

involved judging the direction of motion of a set of randomly

moving dots, which were made without feedback. The base

rate was constant within a block of trials but randomly varied

from one block to another. Crucially, the base rate was not

known to the participant. As the participants made more deci-

sions, the influence of base rate on choice and confidence

increased, which was reflected both in the decision about the di-

rection of motion and in an explicit report about the bias of the

block. A bounded evidence accumulation model explained the

decisions about motion by incorporating an estimate of the

base rate in the accumulation. In turn, a probability distribution

over base rates was updated based on the likelihood that the

motion was rightward or leftward—what we term counterfactual

posterior probability or counterfactual confidence—under the

fictitious supposition that the alternatives were equally likely

(cf. Bernardo, 1979). The model predicted the dynamics of belief

about the direction bias over the block. The findings expose a

role for counterfactual confidence in belief updating, suggesting

that the brain maintains probabilistic representations over deci-

sion hierarchies and timescales: direction over one trial and bias

over many trials. Further, these probabilities are accessible for

explicit reporting.

RESULTS

Three participants were presented with a dynamic display of

random dots of variable duration and had to decide whether

the net direction of motion was rightward or leftward. Within a

block of 15 to 42 trials, one direction of motion (left or right)

was more likely, but which direction was more likely (and by

how much) was unknown to the participant. The difficulty of

the decision was controlled by three factors: strength of motion,

stimulus duration, and bias strength (i.e., base rate). Motion

strength was controlled by the probability (termedmotion coher-

ence [c]) that a dot is displaced in motion as opposed to

randomly. Stimulus duration was sampled from a truncated

exponential distribution (range: [0.1, 0.9] s). Bias strength was

controlled by the probability that the motion direction would be

rightward, termed B, which was selected randomly on each

block from six possible values ranging from 0% to 100% in steps

of 20%. Participants knew the possible values ofB, and that they

were equally likely, but were not told which one applied to the

current block.

Participants made three responses in each trial. They first re-

ported the perceived direction of motion and the confidence

that this decision was correct (Figure 1A, Choice and confidence

report). They then reported whether they considered the block to

have a right or left bias and the confidence in this judgment (Fig-

ure 1A, Belief report). To avoid confusion, we refer to this type of

confidence as ‘‘belief,’’ an estimate of the probability that the

block has a rightward bias (scale 0 to 1). Participants received

no feedback about the accuracy of their decisions during a block
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of trials. Only after completing a block were they told which

direction was the most probable, the strength of the bias in

this direction (either 60%, 80%, or 100%), and the proportion

of trials in which they responded correctly (Figure 1B).

Figure 1C shows a typical sequence of events and reports that

transpire in a single block in the experiment. The bottom two

rows show the particular sequence of 22 trials, each associated

with motion stimulus of some strength, direction, and duration.

The upper two rows show the corresponding behavioral reports:

direction choice, confidence in the choice, and belief about bias

of the block. In this block, the participant was correct on most of

the trials, with a confidence that was strongly correlatedwithmo-

tion strength. At the beginning of the block, the belief was in the

region of high uncertainty (�0.5) and evolved to greater certainty

later in the block. As a glimpse into what we will appreciate in

greater detail later, it can be seen that decisions made with

high confidence are usually followed by larger changes in belief

than decisions made with low confidence. This is evident for tri-

als 9 to 14, which shows a sequence of low-confidence deci-

sions accompanied by subtle changes in belief. The example

provides an intuition for the inference problem the participant

confronts on each short block of trials.

We next describe the main effect of the base rate on the direc-

tion choices, the confidence in these choices and the belief that

the block is biased to the left or right.We then develop a theory to

explain the way the direction decisions inform belief and the way

belief biases those choices. Finally, we use this theory to predict

the time course (evolution) of this belief. We contrast this theory

with alternatives.

Effect of Base Rate on Choice, Confidence, and Belief
Throughout each block, choices were governed by the strength

and direction of randomdotmotion. Figure 2A shows the propor-

tion of rightward choices as a function of stimulus strength,

combining data from all trials sharing the same base rate (color).

When the base rate strongly favored rightward or leftward (1 or 0,

respectively), nearly all of the choices were consistent with the

base rate. At the intermediate base rates, the shift was less pro-

nounced. To capture the effect in a model-free way, we per-

formed logistic regression (solid curves) and estimated the

choice bias (Equation 19, STAR Methods). As shown by the

inset, the subjects clearly internalized the base rate during

the block (Equation 19; p< 10�8; likelihood ratio test; H0: all

b3 = 0). That is, for the same motion strength, subjects were

more likely to choose the direction consistent with the base

rate of the block. We show combined data from all subjects (in-

dividual subjects are presented in Figure S1). It is clear from

these observations that the subjects acquire knowledge about

the base rate of the block despite the absence of feedback about

whether their decisions were correct. Knowledge of the base

rate should improve the performance on the direction task.

This is clearly supported by Figure 2B, which shows accuracy

as a function of motion strength ðjcjÞ, and groups base rates of

similar strength. We adduce from these observations that partic-

ipants incorporated knowledge of the base rate to bias and

improve their decisions.

Subjects furnished two additional reports—confidence and

belief—which indicate that they formed an impression of the



A

B

C

Figure 1. Motion Discrimination Task

Each block of 15 to 42 trials was assigned one of six possible base rates: the prior probability that the motion is rightward. In all blocks, the subject discriminated

the direction of random dot motion. No feedback about individual decisions or the base rate was provided until the end of the block.

(A) Sequence of events within a trial. After fixation and a random delay, random dot motion was displayed for 0.1–0.9 s (truncated exponential). Subjects then

positioned a cursor on the left or right arcs to indicate both choice (left versus right) and confidence (100% certainty [top] to guessing [bottom]). After the motion

decision, the subjects reported whether they believed that the block had a rightward or leftward bias (placing the cursor in the left or right half of the line), together

with the confidence in this belief (from unsure at the center to certainty at the extremes).

(B) Example of the feedback display provided at the end of a block.

(C) Example of a sequence of trials within a block. Lower two graphs show variables controlled by the computer: motion strength, direction, and duration. Upper

two graphs show the subject’s reports: direction choice, confidence that the choice was correct, and belief that the base rate favored rightward. An example of

the task is shown in Video S1.
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prior probability about direction over the course of a block. The

confidence reports associated with each decision were clearly

influenced by the base rate. Figure 2C shows the confidence rat-

ings for correct choices split by the a priori probability that the di-

rection of motion supports the choice that the participant made

(correct choices only). For example, the a priori probability of 0.8

groups together right choices with rightward motion (positive

coherence) in blocks with base rate of 0.8 and left choices with
leftward motion (negative coherence) in blocks with base rate

of 0.2. Two features of the confidence ratings stand out. The

subjects were least confident when themotion wasweak (coher-

ence near zero; Equation 20; p< 10�8, t test, H0 : b1 = 0). More-

over, confidence was higher when the base rate was more infor-

mative (Equation 20; p< 10�8, t test, H0 : b2 = 0). This is

important because it implies that subjects were not merely

choosing one direction more often (e.g., out of habit) but that
Neuron 99, 1–15, September 5, 2018 3
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Figure 2. Behavior Was Influenced by the

Base Rate

(A) Proportion of trials on which the participants

reported rightward motion as a function of motion

coherence. Data (symbols) are shown separately

for the six levels of base rate, from 0 (leftward was

the correct choice for all trials in the block) to 1 (all

rightward), combining all stimulus durations and

trials in the block. The solid lines are fits of a lo-

gistic regression model (Equation 19). The shift in

the psychometric functions indicate that partici-

pants choices were influenced by the base rate.

Inset shows the magnitude of the bias (b3, Equa-

tion 19) against the actual base rate (error bars are

SE; most are smaller than the points; solid line is

least-squares fit).

(B) Effect of motion strength and base rate on

choice accuracy (same data as in A).The base

rates (color) are combined by degree of informa-

tiveness.

(C) Average confidence reported on correct trials

as a function of the motion coherence. The a priori

probability of correct (color) is an expression of the

base rate relative to the choice that is made (see

text). Error bars represent SE across trials.

(D) Average belief as a function of trial number

within a block for the six different biases. Same

color convention as in (A). A belief of 0 or 1 in-

dicates full certainty that the block was biased to

the left or right, respectively. Shading indicates

SEM. Data are combined across all participants.

The same analyses for each participant are shown

in Figure S1, and the distributions of confidence

and belief for each subject are shown in Figure S2.
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they incorporated knowledge of the base rate to reduce uncer-

tainty in the decision.

The second report was the belief that the base rate of the block

favored right or left. This ‘‘belief’’ evolved gradually during the

course of the block (Figure 2D). Note that the belief is not an es-

timate of the base rate, as one can be fully confident in a weak

bias, but its evolution was more rapid on average when the

base rate was more informative (Figure 2D, blue curves). We

will attempt to explain the evolution of this bias by developing

a theory of the two-way interaction between bias and choice—

that is, the effect of bias on each decision and the effect of

each decision on the estimate of the base rate of the block.

Hierarchical Bayesian Model
We developed a hierarchical Bayesian model in which subjects

maintain a probability distribution over the base rate, pðBÞ, within

a block and use this knowledge to influence both their choice

and their confidence within a trial. As we will see, the optimal

way to update pðBÞ is to use a counterfactual form of confi-

dence—the probability that a choice rendered on the evidence

would be correct if the base rate were unbiased (i.e., B = 0:5).

We develop this idea in Figure 3 and provide a mathematical

derivation in the STAR Methods.

Figure 3A shows the hierarchyof causes that give rise to a sam-

ple of motion evidence, x. All trials are affected by the base rate,

B, assigned to the block, and B itself is sampled from a uniform

distribution. The bias in the block establishes the prior probability
4 Neuron 99, 1–15, September 5, 2018
of direction of motion (d = signðcÞ, i.e., R or L) on each trial. The

strength of motion ðjcjÞ and the stimulus duration (T) are deter-

mined probabilistically for all trials (independent of block). The di-

rection and strength of motion specify the stationary stochastic

process comprising samples of evidence, x. We assume that x

is a sample from a Gaussian distribution with mean = kcDt and

variance equal to the sample period ðDtÞ. The parameter k re-

flects the signal to noise of the evidence samples. To make a de-

cision, the brain accumulates samples until either the accumu-

lated evidence (e) reaches a threshold at ±A or the motion

stimulus ends (Figure 3B). The time of this last sample is denoted

te. If leftward and rightwardmotion are equally likely, the decision

about direction should be determined by the sign of e, and the

probability that the motion is rightward is determined by e and

te (Kiani and Shadlen, 2009). The heatmap (Figure 3B, right)

shows the probability that the direction is rightward for all

possible combinations of e and te: puðR j e;teÞ. The example trial

(open circle) would have led to a rightward choicewith probability

0.7 of being correct. The top half of the map thus provides a

lookup table for confidence in a rightward choice. Leftward

choices would arise when the evidence (e) is less than 0, and

the probability that this choice is correct is 1minus the values dis-

played—that is, the top half of themap reflected vertically across

the horizontal green line. These statements about direction

choice, probability of left/right and confidence apply only if left-

ward and rightward motion are equally probable—hence, the

subscript, u (for unbiased), in puðR j e; teÞ. This condition does
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Figure 3. Bayesian Model

(A) Graphical representation of the hierarchy of causes that give rise to a sample of momentary motion evidence. The shaded areas are observed variables, the

unshaded areas are unobserved variables, and the filled squares are fixed hyperparameters. The block bias is sampled from a uniform distribution over six

possible values (parameterized by kB). B is the block’s base rate, which sets the prior probability over motion direction (d) for the entire block. Themotion strength

ðjcjÞ is sampled on each trial from a uniform distribution over six possible values (parameterized by kc), independent of the block’s base rate. In the experiment, jcj
and d set the probability that a dot plotted at time twill be replotted at time t + 40 ms toward the right or left target. The duration of motion (T) was sampled from a

truncated exponential distribution. In the model, it is assumed that the momentary evidence follows a Gaussian distribution with a fixed variance ðDtÞ and amean

that depends on jcj and d.

(B) Bounded evidence-accumulation model of choice and confidence. The decision is made when the accumulation of momentary evidence (e) reaches a bound

ð±AÞ or the stimulus is curtailed, as in the sample trace. The two color maps show the probability that rightward would be the correct choice based on accu-

mulated evidence e at time te, under different assumptions about the base rate: (left) expectation of the base rate is 0.57 in favor of rightward; (right) based rate is

unbiased (0.5). The dashed green line marks the decision boundary ðpðRÞ = 0:5Þ. We refer to the right map ðpuðR j e; teÞÞ, as the counterfactual posterior

probability of rightward. The left map is formed by multiplying the counterfactual posterior by the expectation of the base rate, given the evidence from the

previous trials ðEði�1ÞÞ. The normalization constant assures that the posterior over direction sums to unity.

(C) Belief updating. To update pðBÞ, we multiplied the distribution over base rate from the previous trial (shown on the right) by the expression inside

the parenthesis. This expression is a linear function of B, with a slope given by the counterfactual posterior (center plot). The left panel shows the updated

distribution after the multiplication and normalization. For reference, the horizontal black lines indicate the distribution over base rates from the previous

trial. The normalization constant ensures that pðBÞ sums to unity. The belief that the block is biased in favor of rightward is given by the sum of pðBÞ for B> 0:5

(shading).
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not occur in our experiment, but the mapping plays a role. We

refer to the mapping on the right as a counterfactual posterior

or counterfactual confidence.

In the experiment, one direction within a block is always more

likely than the other, and this affects the probability that the di-

rection is right (or left) given fe; teg. For example, if the base

rate,B, favors rightward, it might give rise to themap in Figure 3B
(left). Notice that the decision criterion (dashed green line) dips to

negative values of e. The mapping to confidence is altered as

well. The same amount of evidence leading to a right choice

(circle) now corresponds to 0.75 probability of being correct.

The calculation supporting this map factors neatly into the

expectation of the base rate multiplied by the counterfactual

posterior—the probability that the direction would be rightward
Neuron 99, 1–15, September 5, 2018 5
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if the two directions were equally likely. The expectation of the

base rate is informed by knowledge obtained on the previous

trials in the block, represented by Eði�1Þhfe; teg1::i�1. In the

example, the expectation of B is 0.57. The confidence

is 0:5730:7 divided by the sum of this term plus ð1� 0:57Þ3
ð1� 0:7Þ, where the last product is pðd = L jEði�1ÞÞpuðL j e; teÞ.
The arithmetic yields approximately 0.75, which is also the pos-

terior probability of right. Put simply, on the current trial, use the

evidence, deliberation time, and the estimate of the base rate

(from previous trials) to make the decision and assign its

confidence.

The remaining question is how knowledge of the base rate is

updated. According to the hierarchical Bayesian model, the sub-

ject begins the block with a prior over the six possible base rates,

p0ðBÞ. The true prior is uniform, but we allow for the possibility

that subjects do not internalize this correctly. Figure 3C shows

how these values are updated. As the graphicalmodel (Figure 3A)

makes clear, inference about B is arbitrated solely by the direc-

tion of motion, d. Key to the update is that the subject should not

use the estimate of direction that they report but the probability

of each direction under a neutral prior ðB = 0:5Þ, in other words,

the counterfactual posterior. This yields the update rule illus-

trated in Figure 3C, which depends on two components that

change across trials: the posterior for rightward (and its comple-

ment for leftward) and the current estimate of the distribution of

B. The use of the posterior can be visualized as a line (Figure 3C,

center) that is then point-wise multiplied by the current pðBÞ (Fig-
ure 3C, right). The six probabilities are scaled to sum to unity

(Figure 3C, left). Note that the updated distribution after one

trial becomes the initial distribution for the next one (i.e.,

pðB jEðiÞÞhpðB j e; te;Eði�1ÞÞ). Again, the full derivation of the ex-

pressions is in the STAR Methods.

To appreciate why the Bayesian solution uses the counterfac-

tual posterior to update pðBÞ, consider the following example.

Suppose that the participant has acquired a slight bias for right-

ward and is then presented with a sequence of stimuli of 0%

coherence. The participant will tend to report rightward more

often because the bias exerts a stronger influence when the ev-

idence is weak. Therefore, if true posterior (confidence) is used to

update the bias, the bias would tend to increase until the deci-

sion maker is certain that the block contains a rightward bias,

even though the sensory evidence is ambiguous. As formalized

by the expression in Figure 3C (and in the STAR Methods, Equa-

tions 6, 7, 8, and 9), the correct approach is to update the belief

based on the likelihood that the evidence ðe; teÞ had been ob-

tained in a trial with right or left motion or, equivalently, the

confidence that the subject would have under a neutral (i.e.,

uninformative) prior. In short, the counterfactual posterior cir-

cumvents the problem of a self-reinforcing prior, what might be

thought of as double counting.

This completes both parts of the theory: (1) how to incorporate

one’s estimate of bias into the choice and confidence about di-

rection and (2) how to update the estimate of bias (including the

confidence in this estimate) based on this experience.

Fits of the Bayesian Model to Choice and Confidence
Our main hypothesis is that participants modify their bias ac-

cording to the counterfactual confidence they have in their deci-
6 Neuron 99, 1–15, September 5, 2018
sion. To test this hypothesis, we use the Bayesian model

described in the previous section to fit each subject’s choices

and confidence reports. We compared thismodel to two alterna-

tive models, one in which participants update their bias based

only on the frequency of left and right choices (i.e., ignoring con-

fidence) and another in which participants used confidence

(instead of its counterfactual) to update the bias. After comparing

the goodness of fit of the three models for the motion direction

reports, we use the best-fitting model to predict—without addi-

tional degrees of freedom—the explicit reports of the belief that

were not used in the model fitting.

We used the sequence of stimuli (motion coherence and dura-

tion) on each trial to maximize the likelihood of the choice (left or

right) and confidence (high or low) on each trial (see STAR

Methods). The model constructs a hidden ‘‘latent’’ representa-

tion of the subject’s knowledge of the base rate, pðBÞ, as it

evolves with each trial. As shown in Figure 4A, subjects’ choice

accuracy was explained by the Bayesian model. The points,

which are identical to those in Figure 2B, combine data over

the entire block, for both directions, and for all stimulus dura-

tions. The more informative the base rate, the more it can be

relied upon to improve accuracy. The model quantitatively

explains the degree to which the base rate was learned and

incorporated by the participants (see Figure S3 for individual

subjects). Figure 4B shows the same accuracy data but as a

function of viewing duration for each motion strength. Here the

data combine all base rates. Note that accuracy improves as a

function of viewing duration for all informative (>0%) coherences

(Equation 21; p< 10�8, t test, H0 : b2 = 0). This improvement is

consistent with bounded accumulation of noisy evidence, where

the bound curtails improvement at longer viewing durations,

consistent with previous studies (Kiani et al., 2008; Zylberberg

et al., 2012). These two graphs are informative cross sections

of a rich dataset.

Knowledge of the base rate, B, was acquired gradually during

each block of trials. Figure 4C demonstrates the time course of

the changes in choice accuracy. We used logistic regression to

estimate the leverage of base rate on accuracy for each trial in

a block (STAR Methods, Equation 21). The ordinate shows the

leverage of B on accuracy after accounting for motion strength.

It supports the model-free assertion that bias-dependent accu-

racy is learned over the course of the block (Equation 21;

p< 10�8, likelihood ratio test, H0: all b6 = 0), and it shows that

this rate is consistent with expectations of the Bayesian model

(gray shading).

The model was also fit to explain the subject’s confidence in

the direction report. For each subject, we tried to explain the

probability that their confidence was high or low, relative to a cri-

terion setting (see STAR Methods). The model produces an esti-

mate of confidence that depends on the stimulus (strength and

duration), the subject’s choice, and the model’s current estimate

of the base rate (Figure 3C). It did not incorporate the subject’s

belief reports. The lower row of Figure 4 shows the confidence

fits in a way that parallels the accuracy analyses. The trial group-

ings are the same as in the corresponding accuracy plots (upper

row), with one exception. The block base rate (Figure 4D) are ex-

pressed as the a priori probability that the direction of motion

supports the choice that the participant made (correct choices



-2

0

2

4

6

8

10

B
as

e-
ra

te
 le

ve
ra

ge
on

 a
cc

ur
ac

y

0.2 0.4 0.6 0.8
Motion duration (s)

0 10 20 30 40
Trial number

-1

0

1

2

3

4

5

B
as

e-
ra

te
 le

ve
ra

ge
on

 c
on

fid
en

ce

0.4

0.6

0.8

1
P

ro
po

rt
io

n 
co

rr
ec

t

0 3.2 12.8  51.2
Motion strength (%coh)

0.2

0.6

1

P
ro

po
rt

io
n

hi
gh

 c
on

fid
en

ce

1, 0
0.8, 0.2
0.6, 0.4

Base-rate

A

D

B

E

C

Model
Data

A-priori prob.
of correct choice

1
0.8
0.6
0.4
0.2

F

0
3.2
6.4
12.8

51.2
25.6

coh(%)

Figure 4. Fits of the Bayesian Model to Choice and Confidence

(A) Proportion of correct responses as a function of motion strength, split by the base rate of the block (same data as Figure 2B). Solid lines are model fits.

(B) Choice accuracy as a function of duration of the motion stimulus, split by motion strength. Symbols are mean ± SE, and solid lines are model fits. Points are

quantiles (�157 trials per point).

(C) The influence of the base rate on accuracy increasedwith trial number within blocks. Symbols are the fitted coefficients (±SE) from logistic regression fits to the

data (b6, Equation 21). The shaded area is the SE estimated from the model (see STAR Methods).

(D) Proportion of high-confidence responses on correct trials as a function of motion and base rate. The colors represent different levels of bias relative to the

chosen direction (similar to Figure 2B). Symbols are mean ± SE across trials. Solid lines are model fits. (Figure S3 shows the error trials.)

(E) Proportion of high-confidence responses as a function of the duration of the motion stimulus. Correct trials only. Same grouping of trials as in (B).

(F) The influence of the base rate on proportion of high-confidence responses increased with trial number within blocks. Symbols are the fitted coefficients (±SE)

from logistic regression fits to the data (b9, Equation 22). The shaded area is the SE estimated from the model (see STAR Methods). See Figure S3 for single-

participant data.
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only), as in Figure 2C. Themodel captures the important features

of the data. Larger a priori probability of a correct choice

increased confidence, and this effect was more apparent at

the weaker motion strengths (Figure 4D). Confidence also varies

as a function of stimulus motion strength and duration (Fig-

ure 4E). There is somemismatch with the model at 12.8% coher-

ence (Figure 4D), especially for the 300–600 ms durations

(Figure 4E). The effects build up gradually as a function of trial

number in the block (Figure 4F), showing that this rate is consis-

tent with expectations of the Bayesian model (gray shading).

We compared the Bayesian model against two alternatives,

which differ in the way knowledge of the base rates is updated

across trials. As indicated in Figure 3C, a Bayesian observer

will update her knowledge about the base rate after each trial

using the expression,

p
�
B j e; te;Eði�1Þ�fðBnr + ð1� BÞnlÞp

�
B jEði�1Þ� Equation 1

where nr = 1� nl is equal to the counterfactual posterior for right-

ward motion, puðR j e; teÞ. In the first alternative, the participant

updates pðBÞ based on the frequency of left and right choices,

weighting all choices equally (i.e., ignoring confidence). This is

implemented by making the evidence nr equal to 1 for right

choices and 0 for left. We refer to this model as the Choice-

onlymodel. In the second alternativemodel, the evidence for up-
dating the bias is the confidence that the participant reports in

each trial rather than the counterfactual confidence that would

have been reported under a neutral prior. To model this, we

made nr equal to the confidence that the subjects report when

they chose rightward, thus equal to pðR j e; te; Eði�1ÞÞ, and to

one minus confidence when subjects chose left. We refer to

this model as the Choice-confidence model. As mentioned

earlier, this model is suboptimal because the evidence for updat-

ing the bias is corrupted by the bias itself.

A model comparison showed that the Bayesian model is the

one that best fit the data for all participants (combining across

participants, the difference in log likelihood was 70 and 75 for

the Choice-only and Choice-confidence models relative to the

Bayesian model; see Table S1 for data from individual partici-

pants). The three models have the same number of parameters

(Table S2), and thus, the same result is obtained with measures

that penalize the goodness of fit by the number of free parame-

ters (e.g., the BIC or AIC). The model comparison supports the

interpretation that participants used a graded measure of cer-

tainty in the decision to update their beliefs about block bias.

The support for the Bayesian model is particularly strong when

we combine the likelihoods over the different participants.

Note that the support for the Bayesian model derives from a

model comparison that uses only the choices and the confi-

dence in the motion direction decision.
Neuron 99, 1–15, September 5, 2018 7
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Figure 5. Descriptive Rendering of the Rule to Update Knowledge of the Base Rate

The Bayesian model and its alternatives can be characterized by the way they update pðBÞ based on the choice-confidence and the expectation of the base rate,

expressed relative to the choice taken (E½Bd�hp½d jEði�1Þ�, similar to a priori probability correct). The strength of the update is parameterized by nd .

(A) For the Choice-only model, nd is always equal to 1.

(B) For the Choice-confidence model, nd only depends on the reported confidence.

(C) For the Bayesian model, nd is the counterfactual confidence, which is a function of both reported confidence and pðd jEði�1ÞÞ.
(D) For the Empirical model, we used a flexible mapping (Equation 16) of confidence and pðd jEði�1ÞÞ to nd that best fit the data.
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The Evidence for Belief Updating: An Empirical
Approach
The three models represent distinct alternatives for updating:

Choice-only, Choice-confidence (i.e., choice weighted by con-

fidence), and Bayesian. The model comparison, based on fits

to choice and confidence, provides support for the Bayesian

model, but the exercise fails to capture the qualitative differ-

ences in these models. Here we pursue a more general

approach (Figure 5). The critical issue differentiating these

models is the way they update the knowledge of the base

rate, pðBÞ. In Equation 1, this is captured by the term nd that

multiplies the six possible values of the base rate (where

d stands for the chosen direction; i.e., nd = nr or nl). We can

view each of the three alternatives as different instantiations

of nd, which depends on two quantities: (1) the confidence

that choice is correct, pðd j e; te;Eði�1ÞÞ, and (2) the expectation

about the direction of motion before seeing the stimulus pre-

sented on the trial, pðd jEði�1ÞÞ. These two quantities are the

abscissa and ordinate of the graphs in Figure 5. The color de-

picts the updating term nd as specified by the three models

(Figures 5A–5C) or fit to the data using an arbitrary combination

of the two terms, which we refer to as an ‘‘Empirical model’’

(Figure 5D). In the Choice-only model (Figure 5A), nd is a con-

stant, implying that the update depends only on the choice.

In the Choice-confidence model (Figure 5B), nd depends only

on the confidence. In the Bayesian model (Figure 5C), nd is

the counterfactual confidence, which manifests as an interac-

tion between confidence and the expectation of the base

rate. Intuitively, this is because the confidence is an expression

of the posterior probability, whose relationship to the counter-

factual posterior requires removal of the prior—that is, the

expectation of the base rate. We next derive an empirical map-

ping that best accounts for the data.

To produce Figure 5D, we used a flexible five-parameter map-

ping (Equation 16) to relate nd to the two quantities represented

on the abscissa and ordinate. Unlike Figures 5A–5C, in which nd

is derived from theory, in Figure 5D, nd is obtained by fitting the

data, as in Figure 4, by maximizing the likelihood of the choice
8 Neuron 99, 1–15, September 5, 2018
and confidence data. The key difference is now we incorporate

additional terms to specify nd (see STARMethods). The resulting

empirical map (Figure 5D) resembles the Bayesian map in Fig-

ure 5C. For a fixed level of confidence, knowledge of the base

rate is affected more strongly when the prior expectation of the

decision direction is less supportive of the choice (vertical

gradient). For example, when this expectation opposes the

chosen direction (i.e., lower half of the map), the update is stron-

ger. Intuitively, this is because the reported confidence is a func-

tion of both the stimulus strength and the prior knowledge.

Therefore, if the prior opposes the choice (expectation < 0:5),

then the confidence that the subject would have under a neutral

prior (expectation = 0:5) must be greater than the one reported.

The exercise complements the conclusions drawn from model

comparison by adopting a more open-ended answer to the

question of what combination of confidence and prior expecta-

tion best supports the updating of pðBÞ consistent with choice.

The answer is that confidence is not sufficient but is adjusted

by prior expectation in a way that emulates the conversion to

counterfactual confidence.

We also explored the possibility that our participants used a

combination of the Bayesian and Choice-confidence models to

update their knowledge about the base rate. To test this alter-

native, we fit a new model, similar to the Empirical model

presented in Figure 5 but in which nr was set equal to

bpuðR j e; teÞ + ð1� bÞpðR j e; te; Eði�1ÞÞ. If b is one, the model

is identical to the Bayesian model, and if b is zero, it is identical

to the Choice-confidence model. For intermediate values of b,

the model updates its knowledge of the base rate using a com-

bination of the values of nr used by both models. We fit the

model to data just as for the Bayesian and Choice-confidence

models, but with b as an additional free parameter. For every

participant, we found that b was greater than 0.9994. This pro-

vides additional support for the Bayesian model over the

Choice-confidence model (and over a combination of the

two). Having provided further support for the Bayesian model

(counterfactual confidence), we now use this model to predict

the subjects’ belief reports.
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Figure 6. The Bayesian Model Predicts Belief Reports

(A) Evolution of beliefs for six example blocks. The colored thick lines are the

data. The thin lines represent predictions from ten simulations of the Bayesian

model using the same sequence of trials (motion strength, duration, and di-

rection) as seen by the subjects. They differ because the evidence is sampled

randomly on each trial ðfe; tegÞ, which may lead to differences in choice and

confidence.

(B) Evolution of belief as a function of the trial number within the block. Lines

are predictions of the model, and the shaded areas show the SE of the data

(as in Figure 2D).

(C) Predicted belief for the last trial of each block plotted against the

data from the same block. The colored circles identify the six blocks shown

in (A). The predictions (abcissa) are from one simulation of the full

experiment; the average R2 indicated in the panel is an average over 200

simulations.

(D) Same comparison as in (C) but averaged by actual base rate. Error bars are

SE (usually smaller than the data points); dashed line is identity. See also

Figures S4 and S5.
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Belief Predictions from Fits to Choice and Confidence
To establish fits of the Bayesian model on the basis of each

subject’s choices and confidence, we relied on an estimate

of the base rate (E½B�, Figure 3B) derived from the distribution,

pðBÞ. This distribution was updated in accordance with

Bayesian theory using the previous decision and counterfac-

tual confidence. Although subjects reported their belief that

the block was biased to the right or left, we did not use

these reports to fit the model. Thus, we can now ask how

well the model predicted these reports. According to the

model, the belief that the base rate favors rightward ought
to correspond to the sum of pðBÞ for values of B greater

than 0.5 (Figure 3C),

beliefh
X
B> 0:5

pðBÞ Equation 2

Figure 6A shows the predictions and data for the belief that the

block has a rightward bias for a few individual blocks. Each panel

shows data from one randomly chosen block (colored trace). The

gray lines show the belief produced from simulations of the

block, using the same stimuli in the same order of the block.

The simulated trials lead to different states of the accumulated

noisy evidence, hence different choices and confidence, which

in turn affect the evolution of pðBÞ. Each gray line shows the evo-

lution of belief for a different run of themodel. For both themodel

and the participants, the belief after the first decision is close

to ½. As more decisions are made, the belief tends to become

more certain.

This is seenmore clearly when we average the belief for the six

different levels of base rate (Figure 2D), redrawn here as colored

areas showing the SEM across trials (Figure 6B). The thin lines in

Figure 6B are the predicted time course from the Bayesian

model. Subjects’ belief reports initially lagged the predictions,

but by trial 20, the data and predictions are almost perfectly

aligned. This agreement was evident across the individual

blocks. To quantify this, we compared the reported belief on

the last trial of each block to the predicted belief on these trials

(e.g., the average of the termination of the model simulation in

Figure 6A). The scatterplot (Figure 6C) displays this comparison

for all 485 blocks (the examples in Figure 6A are identified by co-

lor). Moreover, the average belief on the last trial of each block

was almost identical to the predictions of the Bayesian model

when grouped by base rate (Figure 6D). The agreement between

data and predictions is remarkable considering that the predic-

tions were based only on the fits of the model to the direction

choice and confidence.

While the belief predictions on Figure 6 were produced by the

Bayesian model, similar predictions were made by the Choice-

confidence model and even by the Choice-only model (Fig-

ure S4). This implies that the agreement between model and

data in Figure 6 cannot be taken as support for the Bayesian

model. To compare the accuracy of the predictions made by

the different models, each model was simulated 200 times on

the full experiment, and, for each simulation, we compute the

mean squared error (MSE) between model and data using the

belief at the end of each block. Figure 7 shows theMSE compar-

isons between the Bayesian and the other two models. Each

point represents a pair of simulations using the identical

sequence of motion stimuli. The beliefs predicted by the

Bayesian model were consistently better than those of the

Choice-confidence (Figure 7, left; p< 10�8, paired t test) and

the Choice-only (Figure 7, right; p< 10�8, paired t test) models,

providing additional support for the Bayesian model. We also

corroborated the prediction that stronger motion, associated

with higher confidence on average, should lead to a larger

change in the belief that the block is biased to the right or left

(Figure S5). The analysis does not discriminate between the

Bayesian and the Choice-confidence models, but it is inconsis-

tent with the Choice-only model.
Neuron 99, 1–15, September 5, 2018 9
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Figure 7. Comparison of Model Predictions

of Belief at End of Block

For 200 simulations of the full experiment for each of

the three models, we predicted the belief at the end

of each block and computed the mean squared

error between the predictions and the data. Each

point represents a pair of models that were simu-

lated with the same sequence of stimuli: (left)

Bayesian model versus Choice-confidence model;

(right) Bayesian model versus Choice-only model.

The histogram shows the distribution of the differ-

ence in MSE across the 200 simulations. The pre-

diction errors were consistently smaller for the

Bayesian model.
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One clear mismatch between predicted and observed belief

settings is apparent in the early trials of the block, where there

is a lag in the belief reports relative to the predictions of the

Bayesian model (Figures 6B and S4). We hypothesized that

this lag might arise if participants communicate each change

of belief gradually over several trials, thus blurring the reports.

To evaluate this proposal, we included a single additional param-

eter in our model, the time constant a over which the belief up-

date affects the report (Figure 8A). This simple modification

reduced the discrepancy between model and data (Figure 8B),

and it explains several other aspects of the belief reports, such

as their distribution (Figure 8C; incorporating the lag reduced

the MSE between the reported belief and the model prediction

by 2%, 28%, and 22% for the three subjects, respectively;

p< 0:005 for all subjects). Further, in the Bayesian model, for tri-

als with 0%motion strength, the change of belief should be near

zero on average, because counterfactual confidence is equally

likely to support leftward or rightward motion. On the contrary,

subjects tended to update their beliefs in the direction of the pre-

viously held biases (Figure 8D). This effect was reproduced in

simulations of the model with lag. The intuition is simple: when

the bias is rightward (i.e., belief > ½ ), the changes of belief

from previous trials contribute to the change in belief on the cur-

rent trial even when the coherence is 0%.

The carryover effects of one trial to the next can be observed

more directly by splitting the change in belief by the motion

strength of the previous trial, when themotion strength in the cur-

rent trial is 0%. Consistent with our interpretation, the change in

belief at 0% coherence is informed by the coherence of the pre-

vious trial, an effect that is inconsistent with both the Bayesian

and the Choice-confidence models without lag (Figures 8E and

S8). Further, the Bayesian model predicts that for trials on which

the counterfactual confidence is ½, there should be a negligible

change in belief regardless of the participant’s choice (Figure 8F,

right). Instead, the data show an effect of choice even when the

counterfactual confidence (inferred from the model) is ½ (Fig-

ure 8F, left). A similar dissociation by choice is observed in the

Bayesian model with lag (Figure 8F, center). The chosen direc-

tion is informative about the bias of the block and thus about

the direction of the change in belief that is carried over from pre-

vious trials. Note that our implementation of lag retains consis-

tency with the Bayesian model because the internal estimate

of pðBÞ is updated immediately to affect the next trial (via E½B�).
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It is just the position of the computer mouse used to express

the belief that is smeared over a few trials. We verified this asser-

tion by evaluating an alternative model in which the lag directly

affects the update of pðBÞ (Equation 18) and therefore also

choice and confidence. The best fit was a lag of zero for all sub-

jects. This was true for the Choice-only and Choice-confidence

models too and therefore does not affect the model comparison.

These results indicate that the lag is specific to the communica-

tion of belief rather than the update of pðBÞ itself.
We have assumed that subjects can both report their belief

that the block is biased ðpðB> 0:5ÞÞ and represent the underlying

magnitude of the base rate ðE½B�Þ. To confirm this, we analyzed

the choices on 0% coherence trials in which they were close to

certain about the bias of the block (>0:95 or <0:05 on the previ-

ous trial). If the subject’s representation of base rate matches

that of the block, then on these trials with little net motion, the

subject should report more frequently in the direction of bias

when the base rate is more informative despite the belief being

equally strong. Indeed, subjects weremore likely to report the di-

rection of the belief when the base rate wasmore extreme (Equa-

tion 24; p< 10�6, t test, H0 : b1 = 0). This analysis presents

model-free evidence that participants represent not only the

quantity that they are asked to report (belief) but also a measure

of the magnitude of the base rate.

DISCUSSION

Base rate, prevalence, and prior probability distribution are ex-

amples of statistical regularities that ought to shape our deci-

sions. A decision maker must learn these regularities from

sources, such as census or epidemiological research, or through

learning. We have shown that decision makers can infer such

regularities from their own decisions and use the evolving knowl-

edge of the base rate—its prior probability distribution—to make

better decisions, even during the learning process itself.

Remarkably, they did this without feedback about the validity

of their decisions, which were, for themost part, difficult. Indeed,

more than half of the decisions were about weak motion that

would, under neutral priors, give rise to correct choices on less

than 75% of trials—that is, just better than guessing. Such diffi-

cult trials are the very ones that benefit themost from knowledge

of the base rate. We showed that subjects incorporated an

evolving estimate of base rate into these decisions and their
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Figure 8. A Lag in the Belief Reports

(A) Sketch of the model with lagging belief reports. fi
is the reported belief on trial i, and bi is the belief that

would have been reported under the Bayesian

model. If the time constant of the belief (a) is zero,

the reports are equal to those of the Bayesian

model; if it is one, the belief is always ½.

(B) Evolution of belief as a function of the trial

number within the block. Lines are predictions of the

model with lag. The shaded areas show the SE of

the data.

(C) Distributions of belief reports from the partici-

pants (histogram), and the Bayesian model with and

without lag. The Bayesian model cannot explain the

large number of trials with belief near ½, but the

mismatch is reduced with the addition of the lag.

(D) Change in belief from one trial to the next, as a

function of the current belief. The analysis only in-

cludes trials with 0% motion strength. Data were

binned into 20 percentile groups. For both model

with lag (dashed line) and data (points), beliefs are,

on average, updated in the direction of the previ-

ously held belief. Error bars indicate SE.

(E) As (D), but splitting trials by the sign of the motion

coherence on the previous trial. Data were binned

into five percentile groups. The change in belief is

influenced by the direction of motion of the previous

trial. The effect is replicatedby themodelwith lag, but

not by the Bayesian model. Error bars indicate SE.

(F) Change in belief as a function of the counter-

factual confidence inferred from the model. Data

are split by choice. Lines are moving averages of

100 trials. The Bayesian model predicts no change

in belief if the counterfactual confidence is ½. In

contrast, changes in belief were informed by choice

even when the counterfactual confidence was ½

(left), an effect that is also seen in the model with lag

(middle). Figure S8 shows the same analyses for the

Choice-confidence model.
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confidence while at the same time exploiting the decision to up-

date knowledge of the base rate.

We observed that the influence of the base rate on our three

behavioral measures—decision, confidence, and belief—devel-

oped gradually during the block. This was evident in the two

ways by which we evaluated the learning of the base rates:

implicitly, through their influence on decision and confidence,

and explicitly, through the belief report—the confidence that

the base rate favors rightward. Both methods gave consistent

results. Indeed, we were able to fit a model to the decision and

confidence reports and predict how the belief evolved during

the block. This suggests that the influence of bias on the implicit

and explicit reports is mediated by a common estimate, which in

our model is represented by a probability distribution of possible

base rates that is updated from one decision to the next. It also
shows that people have introspective ac-

cess to quantities that are used in the com-

putations of a hierarchical probabilistic

model, and therefore, subjective reports

can be used to constrain models of deci-

sion making (Kang et al., 2017).
A theoretical analysis showed that the evidence for updating

knowledge about the base rate is a ‘‘counterfactual’’ form of con-

fidence, understood as the confidence that the subjects would

have if left and right were equally likely (i.e., a neutral prior) and

not the confidence that the subjects report. The intuition for

this distinction is simple: the evidence used to modify an hypoth-

esis should not be altered by the decision maker’s previous

belief about the veracity of the hypothesis. We compared the

optimal solution to two suboptimal alternatives that differ in the

information used to update belief: choice-only and choice-confi-

dence. These alternatives achieve explanations of subjects’

evolving belief that differ only subtly from the Bayesian counter-

factual confidence solution, at least by eye (Figure S4, but see

Figure 7), but a formal model comparison supports the conclu-

sion that subjects used counterfactual confidence to update
Neuron 99, 1–15, September 5, 2018 11
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their bias. This conclusion was confirmed with a separate model

in which we directly search over the space of transformations

that map confidence and bias strength on the evidence that is

used to update their knowledge of the base rate (Figure 5). The

use of a counterfactual confidence for updating the bias implies

the existence of different probabilistic quantities associated with

the same state of accumulated evidence, a distinction that may

be related to the one between confidence and visibility (Rausch

and Zehetleitner, 2016).

The concept of a counterfactual posterior, and the related

counterfactual confidence, demands some justification. Mathe-

matically, the counterfactual posterior is simply the likelihood.

Just because we factor the update rule to highlight this quantity

does not automatically imply that the brain uses it. We believe

that such a representation is neurophysiologically plausible

because likelihoods are known to be represented in the brain

(Yang and Shadlen, 2007; Kira et al., 2015) and can arise from

simple sum and differences of neural firing rates (Gold and Shad-

len, 2001; Shadlen et al., 2006; Ma et al., 2006). Moreover, it is

obvious that a representation of counterfactual confidence is

essential in many types of real-world decisions. For example, if

instead of manipulating the prior probability of right and left,

we had altered the reward such that all correct rightward choices

were rewarded more than leftward, it would induce a rightward

bias (Ulehla, 1966; Rorie et al., 2010). In this circumstance, it

would be sensible to express both a confidence that we made

the better choice and a confidence that the motion was to the

right. For example, when confronted with weak motion, we

would be confident that a rightward choice was best while simul-

taneously less confident that the net direction was to the right.

The dual representation of confidence is intuitive when value in-

duces a bias but less so when prior probability (base rate) does

so, because the prior is about the motion itself. What we show

here is that such a dual representation of confidence in our deci-

sion and counterfactual confidence allows us to both respond as

accurately as possible and learn about the statistical regularities

of the environment.

Our Bayesian model incorporates at least one element of sub-

optimality. Although subjects were informed that the distribution

over base rates was discrete and uniform, we allowed for the

possibility that the prior assumed by the subjects was not verid-

ical. We approximated this initial prior, p0ðBÞ, with two parame-

ters, which were estimated in the fits to the direction choice and

confidence (see STAR Methods). All three subjects appear to

have assigned a greater initial probability to base rates away

from the extremes (Figure S6). This might imply that subjects

were unable to override a predisposition that sequences of

random samples tend to be only weakly biased, on average—

an arguably sensible prior over prior probability distributions—

despite direct verbal instruction. The deviation from optimality

was only marginally detrimental to performance. For example,

the proportion of correct responses was 85.01% in the data

and 84.93% in simulations of the Bayesian model, whereas we

estimate that the uniform prior would yield 87.43% correct. It

could be argued that the lag in the belief reports also represents

a suboptimal behavior. This would certainly be the case if the lag

affected actual belief (i.e., pðBÞ), but that was not the case.More-

over, since participants only received feedback about the true
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base rate at the end of the block, there was no cost associated

with delaying the report, and at the end of the block, the belief

was in agreement with theory.

The lag does have an unfortunate ramification, as it limits our

ability to test some qualitative predictions of the Bayesianmodel.

For example, we would predict that the change in belief on trials

with 0% coherence should average to zero regardless of the

currently held belief. However, such an analysis is not possible

because of the lag: the change in belief communicated by the

subject was affected by changes in belief from previous trials.

It would be desirable to eliminate this lag in future investigations.

Preliminary investigations lead us to believe that this might be

achieved using a different method to report belief using move-

ments for which lagging does not reduce motor cost (e.g., eye

movements).

Our task represents an attempt to extend our understanding of

the neurobiology of simple decisions to tasks that have hierarchi-

cal structure. One tempting idea is that the same process of

evidence accumulation that allows one tomake a simple percep-

tual decision extends to higher levels and longer timescales (Kim

et al., 2017; Purcell and Kiani, 2016; Glaze et al., 2015; Braun

et al., 2018). In the abstract, this is true because both are effec-

tively Bayesian, but this insight deserves further scrutiny. The

idea that the brain updates pðBÞ in the same way that it updates

a decision variable implies the accumulation of a scalar quantity

across multiple trials. This strategy would furnish an optimal

estimate of the base rate if the decision maker were to receive

unambiguous feedback about the true direction on each trial

(Laplace, 1814). However, when the decisions vary in difficulty

(and thus in confidence), there is no scalar quantity that the sub-

jects can accumulate from one trial to the next that preserves all

information about pðBÞ. To provide an intuition, suppose the sub-

ject used counterfactual confidence, signed by choice, to up-

date pðBÞ, and consider two scenarios. (1) A decision maker

chooses rightward on the first trial and leftward on the second,

both decisions made with full confidence. (2) The same choices

ensue but with very low levels of confidence. In both scenarios,

the running tally would be zero, but in the first, the uncertainty

should be reduced more than in the second. This is because in

the first scenario, it is known that the block has both right and

left stimuli and therefore extreme biases are unlikely. This knowl-

edge is captured by the normative propagation of pðBÞ but not by
any scalar accumulation strategy. Of course, the brain might

approximate pðBÞ using a few parameters, such as a Beta distri-

bution (Ma, 2012).

In models of bounded evidence accumulation, the prior is

often incorporated as a static shift in the starting point of the

accumulation (e.g., Carpenter and Williams, 1995; Mulder

et al., 2012). In our task, however, this would be suboptimal,

because as time elapses, the same level of accumulated evi-

dence is a less reliable marker of decision accuracy, and thus

the bias should be dynamic (Hanks et al., 2011; Huang et al.,

2012; Drugowitsch et al., 2012). Indeed, Hanks et al. showed

that monkeys and humans are sensitive to the time dependence

of the influence of the prior when making decisions similar to

ours. In their implementation, a dynamic bias signal gradually

displaces the DV toward a decision bound (the one representing

the most likely choice) and away from the other. This
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approximation was motivated by observations in the neural re-

cordings and reaction times. Here we pursued a normative

approach and thus replaced this approximation with a represen-

tation of likelihood and its mapping, induced by the prior, to the

dynamic posterior probability that motion is to the right or left

(e.g., Figure 3B).

The present study complements several recent studies which

have addressed the manner in which a decision maker can

sense a change in the statistical structure of the environment

(Summerfield et al., 2011; Behrens et al., 2007; Norton et al.,

2017; Nassar et al., 2010; Yu and Cohen, 2008; Anderson

and Carpenter, 2006), similar to the change in base rate that

occurs (with probability 5/6) at the beginning of each block in

our experiment. Whereas we provided explicit instruction that

the block changed and no feedback about the decisions

made during the block, these complementary studies provide

no explicit feedback that the environment has changed.

Instead, they provide feedback about the success or failure

of the decisions made in the new environment (cf. Kim et al.,

2017). The common theme is that statistical inference occurs

over two temporal scales, one concerning individual decisions

and the other the statistical regularities about the environment

in which these decisions are undertaken. The key contribution

of the present study is to show that counterfactual confidence,

derived from the decision at hand, informs the evolving knowl-

edge of statistical regularities over the longer timescale of many

decisions. In the tomato problem introduced earlier, the sorter

would apply whatever knowledge of the base rate she has to

each tomato. It would tend to influence the borderline cases

most. With each decision, knowledge of the proportion of

ripe and unripe would be updated using confidence in the to-

mato itself, stripped as it were, from the influence of base

rate, as if imagining a box with equal proportions of ripe and

unripe fruit. The sorter might use this evolving knowledge to

tell a co-worker that a crate seems to contain mostly unripe

fruit and the degree to which she believes this to be true.

She could also report her estimate of the proportion itself,

but as in our experiment, that will also be evident in the deci-

sion about the next sample and the confidence that it has

been sorted correctly.

Without immediate feedback from the world, confidence is

all we know about the veridicality of our assertions. Recent

progress in understanding the mechanisms for deciding and

assigning a degree of confidence to isolated decisions has

set the stage to study the role of confidence in more complex

tasks, especially those that involve multiple steps (Gold and

Stocker, 2017; Zylberberg et al., 2011). It has been suggested

that confidence plays a key role in assigning blame to different

sources of evidence after an error (Purcell and Kiani, 2016;

McGuire et al., 2014), controlling how much effort and time

to invest in a decision that depends on the success of a

previous decision (van den Berg et al., 2016), combining deci-

sions in a hierarchy to maximize reward (Lorteije et al., 2015),

and guiding perceptual learning in the absence of feedback

(Guggenmos et al., 2016). Confidence may also play a role

in combining individual opinions with those of a group

according to their reliabilities (De Martino et al., 2017;

Park et al., 2017; Bahrami et al., 2010). Our work adds to
these studies by showing that confidence mediates the

bidirectional process by which decisions both inform

and are informed by a dynamic estimate of a base rate.

It does so by drawing implicitly on counterfactual knowl-

edge about confidence associated with a setting that is inap-

plicable to the decision at hand. Counterfactual reasoning is

thought to play a role in slow, deliberative decision making,

where it relies on narrative devices or playing through imag-

ined scenarios. It is intriguing to consider that a more

automatic form of counterfactual reasoning, such as we

have demonstrated here, arises in a ‘‘thinking fast’’ (Kahne-

man, 2011) mode, where it conforms to normative Bayesian

principles.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Three human participants (2 male, 1 female; age 24-35) gave informed consent and participated in the experiment. The experimental

protocol was approved by the local ethics committee (Institutional Review Board of Columbia University Medical Center). All partic-

ipants had normal or corrected-to-normal vision, and were naive about the purpose of the study. Owing to sample size, no gender

specific analyses were performed.

METHOD DETAILS

Behavioral Task
Stimuli were displayed on a CRT monitor (ViewSonic, PF790) with a refresh rate of 75 Hz. A head and chin rest ensured that the dis-

tance between the participants eyes and the monitor’s screen was 48 cm. We tracked the position of the eye with an Eyelink 1000

eye-tracker.

Subjects performed a motion direction discrimination task in blocks of trials. They were given no information about their

performance until the end of each block. The number of trials in each block was sampled from a truncated geometric distribution

(p = 1/15) with a minimum of 15 trials and a maximum of 42 trials. Within each block of trials, one of the motion directions (leftward

or rightward) was more probable than the other. The base rate of each block was sampled with equal probability from the set

B˛½0;0:2;0:4;0:6;0:8;1�, where B indicates the proportion of rightward directions. That is, given a block of ntr trials, the number of

trials with rightward motion was B3 ntr , rounded to the nearest integer. The order of trials was randomly permuted. Subjects

were informed about the set of base rates and that they were equally probable for each block, but they were not informed about

the base rate of each block until the block was completed.

Each trial started with participants fixating a small point (diameter of 0.33 deg visual angle) at the center of the screen. After 0.5 s,

two target arcs (2p=3 radians) of an imaginary circle (radius 10 deg) appeared to the left and right of the fixation point (Figure 1; similar

to Zylberberg et al., 2016). The Subjects had to select the left or right target to indicate leftward or rightward motion, respectively.

Subjects used the upper extreme of targets to indicate full decision confidence (100% certainty that the direction choice was correct)

and the lower extreme to indicate guessing (50% certainty). Intermediate values represent intermediate levels of confidence. As a

visual aid, the targets were colored from green to red from top to bottom (Figure 1).

After a variable duration of 0.3 - 1 s (truncated exponential; t = 0.5 s), the random dot motion was presented in a virtual aperture

centered at fixation and subtending 5 degrees of visual angle. The dot density was 16.7 dots/deg2/s and the displacement of the

coherently moving dots produced an apparent speed of 5 deg/s. In each video frame, a subset of the dots presented 40 ms earlier

were displaced toward the right or left target, depending on the motion direction for that trial. The details of the stimulus generation

process can be found in previous studies (e.g., Roitman and Shadlen, 2002). The probability that a dot moved coherently as opposed

to randomly varied from trial to trial according to the motion strength ðjcjÞ, sampled uniformly from the set [0, 3.2, 6.4, 12.8, 25.6,

51.2]%. To keep the motion strength approximately balanced within each block, we constructed a list of motion coherences by

repeating the six unique coherence values until the first multiple of six that is larger than ntr ; then we shuffled these motion coher-

ences, and assign the first ntr values to the trials in the block. Note that the distribution of motion strengths within a block is indepen-

dent of the base rate.
e1 Neuron 99, 1–15.e1–e6, September 5, 2018

mailto:ariel.zylberberg@gmail.com
mailto:ariel.zylberberg@gmail.com
https://dx.doi.org/10.17632/vzhs4m5573.1
https://github.com/arielzylberberg


Please cite this article in press as: Zylberberg et al., Counterfactual Reasoning Underlies the Learning of Priors in Decision Making, Neuron (2018),
https://doi.org/10.1016/j.neuron.2018.07.035
The random dot motion disappeared after 0.1-0.9 s (truncated exponential, t = 0.6 s), together with the fixation point, and the

participant then reported her decision with a computer mouse. Subjects were free to move the cursor until satisfied with their choice

and confidence report (signaled by pressing the spacebar). As a visual aid, when the cursor approached one of the arcs, amarkerwas

shown on the arc that was closest to the cursor position together with a number between 50 and 100, indicating the probability (as

percentage). See Video S1 for the actual stimulus display.

After the choice and confidence reports aboutmotion direction, subjects reported the degree towhich they considered the block to

be biased in one direction or the other, indicated on a continuous horizontal scale. The leftmost extreme indicated full certainty in a left

bias (belief = 0) and the rightmost extreme indicated full certainty in a right bias (belief = 1). The in-between points represented in-

termediate levels of certainty, with the center of the scale indicating maximal uncertainty, meaning that subjects considered equally

likely that the block was biased in one direction or the other. We used color gradients as a visual aid, with a scale that went fromwhite

to black and then back towhite. Subjects reported their decision bymoving a small triangle to the desired location before pressing the

spacebar to record the belief as the current position of the triangle (see Video S1). For the first trial of a block, the triangle was

rendered at the center. For all subsequent trials it reappeared at the location where it was set in the previous trial. Subjects were

only provided with feedback after a block had been completed. Feedback comprised a single screen indicating whether the block

was biased to the left or to the right, the probability that a trial was biased in this direction (60, 80 or 100%), and the proportion of trials

in the block that the subject reported correctly. An example feedback screen is shown in Figure 1B.

Participants performed the task across multiple sessions (9 to 14, usually 1 session/day). They usually completed 12 blocks per

session. Across days, participants completed 165, 150 and 170 blocks, respectively, for a total of 4564, 4051 and 4554 trials. Before

performing the main experiment, participants were trained to discriminate the direction of random dot motion. During training, the

base rate was fixed and equal to ½. Participants first performed a version of the task in which they were only required to report

the motion direction (436, 432 and 936 trials per participant). During a second stage of training, they also reported their confidence,

using the same numerical scale as in the main experiment (961, 288 and 384 trials per participant).

Model
We used a bounded evidence accumulation model to fit the choices and the confidence about motion direction. In the model, these

reports are based on the state of accumulatedmotion evidence (decision variable, e) at the time ðteÞ that a bound (at ±A) is reached or

when the stimulus ends. The decision variable evolves according to 1-dimensional process of Brownian motion plus deterministic

drift. In small time steps Dt, the state of the decision variable is updated based on the sum of terms representing a deterministic drift

and stochastic diffusion. The drift term is given by kc Dt, where c is the signed motion coherence and k is parameter which deter-

mines the signal-to-noise ratio. The diffusion term follows a normal distribution with a standard deviation of
ffiffiffiffiffiffi
Dt

p
, such that the vari-

ance at t = 1s (absent bounds) would equal 1. This is not a free parameter, since for any other value we can obtain an equivalent model

by scaling k and A appropriately (Palmer et al., 2005; Shadlen et al., 2006).

The model assumes that the decision maker has access to the state of the decision variable e and the decision time te. In the

Bayesian model, the reports of choice and confidence are based on the posterior probability over motion direction, pðd j eðiÞ; tðiÞe ;

Eði�1ÞÞ, and the belief report is based on the posterior probability over base rate, pðB j eðiÞ; tðiÞe ;Eði�1ÞÞ. In these expressions, d is the

motion direction, B is the base rate of the block, and i is the trial number. EðiÞ is the tuple of all observations of e and te up to trial i

within a block: Eði�1Þhfe; teg1::i�1.

The posterior over the two possible directions of motion, pðd j eðiÞ; tðiÞe ;Eði�1ÞÞ, can be obtained by Bayes rule:

p
�
d j eðiÞ; tðiÞe ;Eði�1Þ�=p

�
eðiÞ; tðiÞe

��d;Eði�1Þ�p�d jEði�1Þ�
p
�
eðiÞ; tðiÞe

��Eði�1Þ� (3)

Which simplifies to:

p
�
d j eðiÞ; tðiÞe ;Eði�1Þ�fp

�
eðiÞ; tðiÞe

��d�X
B

pðd jBÞp�B jEði�1Þ� (4)

where the constant of proportionality is such that the sum of the probabilities of right and left equals 1. The sum on the right side of

expression 4 is over the six possible values of B.

The likelihood in expression 4 can be computed by marginalizing over motion coherence (c):

p
�
eðiÞ; tðiÞe

��d�=X
c

p
�
eðiÞ; tðiÞe

�� c;d�pðc jdÞ (5)

where pðc jdÞ is a uniform distribution over the coherence values that are compatible with motion direction d, and pðeðiÞ; tðiÞe
��� c;dÞ is

obtained from the numerical solutions to the Fokker-Planck equation, which governs the bounded drift-diffusion (Kiani and Shad-

len, 2009).

By Bayes rule, the likelihood pðeðiÞ; tðiÞe
���dÞ is proportional to the posterior, puðd j eðiÞ; tðiÞe Þ, under a neutral prior. Further, pðd jBÞ is

equal to B if d is rightward, and to ð1� BÞ if d is leftward. These substitutions lead to the expression in Figure 3B.
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The choice and the confidence about motion direction are derived from the posterior pðd j eðiÞ;tðiÞe ;Eði�1ÞÞ. The decision maker choo-

ses rightward if pðd =R j eðiÞ; tðiÞe ;Eði�1ÞÞ> 0:5 and chooses leftward otherwise.

The belief is obtained from the posterior over base rate, pðB j eðiÞ; tðiÞe ;Eði�1ÞÞ. By Bayes rule:

where the constant of proportionality is such that X
B

p
�
B j eðiÞ; tðiÞe ;Eði�1Þ�= 1 (7)

and

p
�
eðiÞ; tðiÞe

��B�=p
�
eðiÞ; tðiÞe

��R�pðR jBÞ|fflfflfflfflffl{zfflfflfflfflffl}
B

+p
�
eðiÞ; tðiÞe

�� L�pðL jBÞ|fflfflfflffl{zfflfflfflffl}
1�B

(8)

The strikethrough in Equation 6 serves as a reminder that Eði�1Þ only affects the probability of the evidence throughB. Again, noting

that pðeðiÞ; tðiÞe
���dÞ is proportional to the confidence under a neutral prior, puðd j eðiÞ; tðiÞe Þ, we obtain the expression in Figure 3C.

These calculations are iterated for the subsequent trials in the block, where the posterior after one trial becomes the prior for the

next one:

p
�
B jEðiÞ�hp

�
B j eðiÞ; tðiÞe ;Eði�1Þ� (9)

The Bayesian, Choice-only and Choice-confidencemodels differ only on the way in which pðBÞ is updated from one trial to the next

(see Equation 1 of the main text).

Model Fitting
The model was fit to each subject’s choice and confidence report on each trial. Each trial supplies a left or right choice and a con-

fidence rating, which we transformed into a commonmonotonic scale (see below). For fitting, we categorized the confidence ratings

as either high or low. This allowed us to treat each confidence report as a binary variable with likelihood comparable to the choice. For

each subject, the lowest 30% of the confidence reports were considered low confidence. The cutoff seemed sensible given (i) the

way confidence reports cluster in the scale (Figure S2), (ii) that it approximates the proportion of low confidence reports in a similar

task in which subjects categorized confidence into low or high (van den Berg et al., 2016), and (iii) that changing this value within a

reasonable range does not alter the results reported here.

We performed maximum-likelihood fits of the model parameters q separately for each subject:

bq = argmax
q

 XM
j = 1

XNj

i =1

log
�
p
�
choice

ðiÞ
j ; conf

ðiÞ
j

��� cðiÞ
j ; T

ðiÞ
j ;E

ði�1Þ
j ; q

��!
(10)

where Nj is the number of trials in block j, M is the number of blocks, choice and conf are the chosen alternative (left/right) and the

category of the confidence report (high/low) on trial i in block j. Note that information from the previous trials in the block affects the

current one through the distribution over base rate pðB jEði�1Þ
j Þ. The joint distribution over choice and confidence is calculated by

marginalizing over the values of e and te that are consistent with the report. Note for simplicity, from here on, we drop the subscript

notation for the block. For instance, the probability of a rightward choice of low confidence is calculated as:

p
�
R; low j cðiÞ; T ðiÞ;Eði�1Þ; q

�
=

ZZ
p
�
e; te j cðiÞ; T ðiÞ; q

�
10:5<pðR je;te ;Eði�1Þ ;qÞ<f

de dte (11)

where 1x is an indicator function that evaluates to 1 when x is true and to zero otherwise, and f is a fitted parameter—a criterion on

probability correct that separates high from low confidence responses. The indicator function restricts the integration to the range of

values of e and te for which the probability of rightward motion is higher that 0.5 but lower than f.

For the first trial in a block, because the subject knows the six possible values that the bias can take and that they are equally likely,

the initial distribution over bias p0ðBÞ should be uniform on these discrete values. However, we assumed that p0ðBÞ could be non-

uniform. The distribution p0ðBÞ is fully specified by two parameters, because there are six possible values that B can take and we

assume that the distribution is symmetric around 0.5. For fitting, theweight of the two values closer to 0.5 was set to 1 (before normal-

izing the probability distribution), and the other twoweights,u1 (for the two intermediate value ofB) andu2 (for the highest and lowest

values of B), were fit to the data. The best-fitting parameters for each subject are shown in Table S2 (see also Figure S6).

To update the probability distribution over B from one trial to the next, we need to know the ratio of the likelihoods pðeðiÞ;
t
ðiÞ
e

���RÞ=pðeðiÞ; tðiÞe ��� LÞ, or equivalently, the ratio of the confidence in rightward and leftward choices under a neutral prior, puðRjeðiÞ;
t
ðiÞ
e Þ=puðLjeðiÞ; tðiÞe Þ. These likelihoods depend on state of accumulated evidence e and the decision time te of each trial, which are

not available to the experimenter. However, we can use Bayes rule to derive the ratio from the transformed confidence reports

and the distribution over base rates from the previous trial.
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On trials in which subjects chose rightward, confidence is equal to pðR j eðiÞ; tðiÞe ;Eði�1ÞÞ which by Bayes rule is:

where the strike-throughmakes explicit supervenience (i.e., given direction, the evidence from previous trials is irrelevant to the likeli-

hood). Similarly,

p
�
L j eðiÞ; tðiÞe ;Eði�1Þ�=p

�
eðiÞ; tðiÞe

�� L�p�L jEði�1Þ�
p
�
eðiÞ; tðiÞe

��Eði�1Þ� = 1� p
�
R j eðiÞ; tðiÞe ;Eði�1Þ� (13)

Then the ratio of the likelihoods can be derived from the confidence reported by the subject and the prior expectation over direction

of motion that is updated over trials:

p
�
eðiÞ; tðiÞe

��R�
p
�
eðiÞ; tðiÞe

�� L� =
 

p
�
R j eðiÞ; tðiÞe ;Eði�1Þ�

1� p
�
R j eðiÞ; tðiÞe ;Eði�1Þ�

!	
1� p

�
R jEði�1Þ�

pðR jEði�1ÞÞ



(14)

Because we cannot assume that the numerical confidence ratings directly reflect the internal estimates of the probability of being

correct, we applied a monotonic transformation to the ratings, which captures their expected distribution under the three models. To

transform the reported confidence into the posterior probability that d is the correct choice, pðd j eðiÞ; tðiÞe ;Eði�1ÞÞ, we assumed that

pðd j eðiÞ; tðiÞe ;Eði�1ÞÞ is a monotonic but potentially nonlinear function of the reported confidence. We derived this transformation

empirically. Each behavioral trial was assigned a value of probability correct from simulations of the model. The assignment pre-

serves the rank-order of the confidence reports; for instance, the behavioral trial with highest confidence is assigned the highest value

of confidence produced by the model. Note that values of probability correct obtained from simulations of the model depend on the

model parameters. Therefore the transformation of the confidence ratings must be established iteratively duringmodel fitting. Impor-

tantly, the transformation does not affect the high/low designation because it preserves the order of the raw confidence reports. It

does affect the model predictions because it affects counterfactual confidence, hence the update of pðBÞ.
The parameter-free transformation of confidence ratings to probability correct (shown in Figure S7A) ensures that the confidence

distributions of the model and the data are identical. Therefore, we can compare the analog confidence reports between model and

data as a function of the variables of interest: choice accuracy, motion strength, and base rate (Figure S7B). We also used the trans-

formed reports in the Bayesian and Choice-confidence models. The conclusions of our study would not change had we used the raw

confidence reports, although without the transformation the model could not explain the idiosyncrasies in the confidence ratings

(e.g., the over and under confidence displayed by different participants; Figure S7C).

The Bayesian, Choice-only and Choice-confidence models use the same five parameters: k and A (drift-diffusion); f (confidence

binarization); u1 and u2 (initial prior over base rate). We used the Bayesian Adaptive Direct Search (BADS) method to find the

maximum-likelihood parameters (Acerbi and Ma, 2017). We used different initial starting points (N = 30) to reduce the risk of finding

local maxima.

From the best fitting model parameters, we predicted the participants belief reports using the posterior pðB j eðiÞ; tðiÞe ;Eði�1ÞÞ. The
belief that the block is biased to the right is given by

beliefh
X
B> 0:5

p
�
B j eðiÞ; tðiÞe ;Eði�1Þ� (15)

In the empirical model (Figure 5D), we parameterized nd (from expression 1) as a logistic function with five parameters:

logit½nd�= b0 + b1conf+ b2p
�
d jEði�1Þ�+ b3p

�
d jEði�1Þ�conf+ b4

conf

pðd jEði�1ÞÞ (16)

where ’conf’ is the transformed confidence. The b are fit simultaneously with the other 5 parameters of the model. The mapping from

confidence and motion expectation to nd for the best-fitting model is shown in Figure 5D. Similar results were obtained using the raw

confidence ratings instead of the transformed confidence in Equation 16.

The model predictions displayed in Figures 4, 6, 7, and 8 were obtained from simulations using the fitted parameters. Predictions

are based on 200 simulations of the full experiment, using the same sequence of trials (motion strength, direction, and duration) as

those performed by the participants. To produce the smooth lines in Figure 4 at interpolated values, we simulated each trial repeat-

edly with a fine grid of motion strengths (Figures 4A and 4D), and stimulus durations (Figures 4B and 4E). Each interpolated point

requires simulation of the entire experiment.

We considered two models to explain the apparent lag between reported belief and model predictions, evident in Figure 6B. In the

first, the lag only affects the expression of the report, analogous to capacitor charge, in accordance with the difference equation,

fi = fi�1 + ðbi � fi�1Þð1� aÞ (17)
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where fi is the belief reported on trial i and bi is the belief that would have been reported if there were no lag in the belief reports

(Equation 2). The time constant, a, was fit to minimize the mean-squared error between model and data (Figure 8B).

We also explored an alternative non-Bayesianmodel in which the lag affects the update of pðBÞ, and thus choice and confidence. In

this alternativemodel the distributions over base rate for trial i, piðBÞ, is a weighted average of the distribution over base rates from the

previous trial, pi�1ðBÞ, and the distribution that would result if pðBÞ were updated in a Bayesian manner, pb
i ðBÞ,

piðBÞ=pi�1ðBÞ+
�
pb
i ðBÞ � pi�1ðBÞ

�ð1� aÞ (18)

We fit this model to the choice and confidence data, refitting all parameters of the Bayesian model plus the a parameter. We also

use this alternative implementation of lag in the Choice-only and Choice-confidence models, replacing pbðBÞ in Equation 18 by the

value of pðBÞ of the matching model without lag.

Data Analysis
We used linear and logistic regression models to evaluate the influence of the base rate, motion strength, and viewing duration, on

choice, confidence, and belief. We used t tests (using the parameter estimates and its standard error) to evaluate the null hypothesis

that a single coefficient of a linear regression model is zero. For logistic regression models, we used likelihood-ratio tests for nested

models to evaluate the null hypothesis that one or more of the regression coefficients were equal to zero. Unless otherwise indicated,

we incorporated data from the three participants in all regression models using indicator variables.

The logistic regression model used to examine the effect of base rate on choice (solid lines of Figure 2A) is:

logit½p+ �= b1Tc+
XnB
i = 1

�
b2;ic+ b3;i

�
IBi

+
XnS�1

j = 1

b4;j ISj
(19)

where p+ is the probability of a rightward choice, c is the motion coherence and T is the stimulus duration. The subscripted indicator

variables I are over base rateB and subject S. For instance, IBi
is equal to 1 for trials from blocks with base rateBi, and zero otherwise.

The second subscripts of the b parameters indicate separate parameters fit over the indexed categorical variables. nB and nS are the

number of unique base rates and the number of subjects respectively. Note that the b4 coefficient associated with the last subject is

omitted from the equation to avoid redundant parameterization (singular design matrix). The inset in Figure 2A shows the b3;i coef-

ficients and associated standard errors obtained from the logistic fits using combined data from all subjects.

To examine the influence of base rate and motion strength on confidence, we used the following linear regression model, fit using

correct decisions only:

conf= b1jcj + b2Bsr + b3h+
XnS
i = 1

b4;i ISi
(20)

where conf is the confidence report (0.5-1 scale), Bsr is the base rate relative to the choice (B for rightward and 1� B for leftward

choices), and h is the choice (left or right) to account for potential differences in confidence due to chosen side.

The regressionmodel used to evaluate howaccuracy depends onmotion strength, motion viewing duration, trial number, and base

rate (Figure 4C) is:

logit½pc�= b1jcj + b2T +
XnS�1

i = 1

b3;i ISi
+
XnS
j =1

b4;jjcj ISj
+
Xntr
k = 1

�
b5;k + b6;kBs

�
INk

(21)

where pc is the probability of a correct response, N is the trial number, ntr is the maximum number of trials in a block and Bs is the

informativeness of the base rate (i.e., either 0.6, 0.8, or 1). Figure 4C (top) shows the b6 coefficients.

A similar logistic regression model was fit to confidence (Figure 4F):

logit½ph�= b1jcj + b2T + b3h+ b4a+
XnS�1

i = 1

�
b5;i + b6;i

��c�� �ISi
+
XnS
j = 1

�
b7;j

��c�� a�ISj
+
Xntr
k = 1

�
b8;k + b9;kBsr

�
INk

(22)

where ph is the probability of a high-confidence report, h is the choice (left or right) to account for potential differences in confidence

due to chosen side, and a is the accuracy of the response (0 or 1 for incorrect and correct decisions respectively). Figure 4F (bottom)

shows the b9 coefficients. The extra terms are included as potential confounders.

The same regressions were used for both data and model in Figures 4C and 4F. For the model, we conducted the logistic regres-

sions independently for 200 simulations the model and then averaged the regression coefficients. The standard errors (gray shading)

are the standard deviation of the coefficients from the 200 simulations. The model was evaluated on the same sequence of trials as

the participants.
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To test the influence of motion strength on DBelief (Figure S5), we fit the following linear regression model:

DBelief= b1jcj + b2T + b3Beliefc +
XnS
i = 1

b4;i ISi
(23)

where DBelief is the difference between the belief reported in the current trial and the belief reported in the previous trial (or the dif-

ference from ½ for the first trial of the block). To simplify the regression model, DBelief was multiplied by �1 when the subject chose

the leftward direction of motion. Therefore a positive DBelief indicates a change in the direction of the choice. Accordingly, Beliefc is

the belief in the current trial (see Figure 6) relative to the actual choice (i.e., Beliefc is equal to the reported belief for rightward choices,

and to one minus the reported belief for leftward choices). As in Figure S5, only correct trials were used for the regression model.

We used the following logistic regressionmodel to test the influence of the block’s base rate on the choices for 0%coherence trials:

logit½pconsistent�= b1Bs + b2T +
XnS
i = 1

b3;i ISi
(24)

where pconsistent is the probability that the choice is made in the direction consideredmost likely by the subject, that is, consistent with

the belief reported on the previous trial. In the regression analysis we only included trials of 0%motion strength and those in which the

belief in the previous trial was either lower than 0.05 or higher than 0.95.

In the analysis of Figure 8, we used the MSE between the reported belief and the model prediction to compare the goodness-of-fit

of the models with and without lag. We evaluated the significance of the difference in the MSE by simulating each model 200 times,

and defining the p value as the proportion of times in which the model with lag had a lower MSE than the Bayesian model.

DATA AND SOFTWARE AVAILABILITY

Data and code are available at https://github.com/arielzylberberg. Behavioral data is also available at https://dx.doi.org/10.17632/

vzhs4m5573.1.
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Figure S1. Behavioral influence of the block’s base rate. Related
to Figure 2. Same graphs and data as in Figure 2, but shown separately for
each participant (columns). Rows A,B,C,E correspond to panels A-D of Figure
2. Panel D shows the average confidence ratings for error trials split by the
a priori probability correct of the block. Same color convention as panel C. For
example, the points in orange comprise trials in which the subject erroneously
chose left in blocks containing 80% rightward motion, or erroneously chose right
in blocks containing 80% leftward motion. Points comprising less than 5 trials
are not shown.
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Figure S5. Change in belief depends on current belief, choice, motion
strength and duration. Related to Figure 6. All panels depict the average
change in the belief, from one trial to the next, that the base rate assigned to
the block favors rightward. Only correct trials are included in this analysis.
(A) Data split by choice (line style) and motion strength (color). For each
coherence and for the two choices, the belief increased when participants chose
rightward motion and decreased when they chose leftward motion. Further,
because the scale is bounded, the changes approach zero at the extremes. More
interestingly, for the same level of the current belief, stronger motion led to
larger changes in belief (Eq. 23; p < 10−8, t-test, H0 : β1 = 0). The traces were
obtained by grouping trials in 9 equally-spaced bins of belief. The error bars
indicate s.e.. (B) Data split by choice and median duration (color), combining
all motion strengths. Longer durations were associated with larger changes
in belief (Eq. 23; p < 10−8, t-test, H0 : β2 = 0). (C & D) Simulations of
the Bayesian model; same conventions as A & B. A prediction of the Bayesian
model is that stronger motion, which is associated with higher confidence on
average, should lead to a larger change in the belief that the block is biased to
the right or left. The predicted changes are larger than observed. One factor
that contributes to this mismatch is that participants’ reports appeared to lag
behind their internal representation of belief (see main text). Importantly, and
regardless of the difference in absolute magnitude, the relationship between
motion strength and change in belief is incompatible with models in which
only choice—and not the certainty of the choice—informs the revision of belief.
For the model predictions, we grouped trials from 200 simulations of the full
experiment.
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Figure S7. Remapping of reported confidence to a common probabil-
ity scale. Related to STAR Methods. As shown in Supplementary Figure
S2, each of the participants used the confidence rating scale differently. We
assumed these reports are monotonically related to the actual confidence—that
is, the probability that the choice made was correct. The method to achieve this
transformation (i.e., remapping) is explained in Methods. This figure supports
the use of this transformation. (A) Comparison of raw and remapped confidence
reports. The blue trace are ordered pairs of the sorted raw confidence reports
and their transformed value (no smoothing). The green trace show the cor-
responding proportion correct (running average, N=150). The match between
blue and green curves indicates that our transformation of the confidence rat-
ings roughly approximates the proportion of correct responses for each level of
confidence. (B) Average confidence (remapped) in groups of trials determined
by combinations of motion strength (abscissa), bias strength (colors) and accu-
racy (top and bottom rows). The agreement between model and data indicates
that the use of remapping allows to explain not only the confidence ratings cat-
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Participants
S1 S2 S3 Combined

Choice-only model 29 39 2 70
Choice-confidence model 29 43 3 75
Bayesian model 0 0 0 0

Table S1. Differences in log-likelihood relative to best model for each sub-
ject. The best model for each subject is highlighted in bold. The log-likelihood
for the Bayesian model are -3142, -2612 and -3506 respectively for the three
participants. Related to STAR Methods.

.
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Participants
S1 S2 S3

κ signal-to-noise 19.42 23.27 16.67
A bound height 1.55 1.12 3.45
ω1 weight for 2nd and 5th elements of p0(B) 0.05 0.49 0.003
ω2 weight for 1st and 6th elements of p0(B) 0.004 0 0
φ high/low confidence separatrix 0.72 0.78 0.68

Table S2. Best-fit parameters of the Bayesian model. Related to STAR Meth-
ods.

10


	NEURON14367_annotate.pdf
	Counterfactual Reasoning Underlies the Learning of Priors in Decision Making
	Introduction
	Results
	Effect of Base Rate on Choice, Confidence, and Belief
	Hierarchical Bayesian Model
	Fits of the Bayesian Model to Choice and Confidence
	The Evidence for Belief Updating: An Empirical Approach
	Belief Predictions from Fits to Choice and Confidence

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Method Details
	Behavioral Task
	Model
	Model Fitting
	Data Analysis

	Data and Software Availability




