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Bounded Integration in Parietal Cortex Underlies Decisions
Even When Viewing Duration Is Dictated by the
Environment
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Washington 98195

Decisions about sensory stimuli are often based on an accumulation of evidence in time. When subjects control stimulus duration, the
decision terminates when the accumulated evidence reaches a criterion level. Under many natural circumstances and in many laboratory
settings, the environment, rather than the subject, controls the stimulus duration. In these settings, it is generally assumed that subjects
commit to a choice at the end of the stimulus stream. Indeed, failure to benefit from the full stream of information is interpreted as a sign
of imperfect accumulation or memory leak. Contrary to these assumptions, we show that monkeys performing a direction discrimination
task commit to a choice when the accumulated evidence reaches a threshold level (or bound), sometimes long before the end of stimulus.
This bounded accumulation of evidence is reflected in the activity of neurons in the lateral intraparietal cortex. Thus, the readout of visual
cortex embraces a termination rule to limit processing even when potentially useful information is available.
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Introduction
A hallmark of cognition is the ability to choose among alter-

natives based on evidence bearing on the state of the world and
the expected consequences of any particular choice. A neural
correlate of simple perceptual decisions, involving a choice be-
tween two actions based on the stimulus identity (Fechner, 1860;
Wundt, 1865; Green and Swets, 1966; Link, 1992; Gold and
Shadlen, 2007), has been demonstrated in sensory-motor associ-
ation areas that are concerned with the preparation of the actions
(Platt and Glimcher, 1997; Schall and Thompson, 1999; Shadlen
and Newsome, 2001; Roitman and Shadlen, 2002; Glimcher,
2003; Romo and Salinas, 2003; de Lafuente and Romo, 2005;
Gold and Shadlen, 2007). For example, in monkeys trained to
judge the motion direction of dynamic random dots and to re-
port their decision with a saccade, neurons in several visuomotor
integration areas, including lateral intraparietal cortex (LIP), rep-
resent the transformation of the motion information into a deci-
sion variable that directs the saccade (Kim and Shadlen, 1999;
Gold and Shadlen, 2000, 2003; Horwitz and Newsome, 2001;
Shadlen and Newsome, 2001).

In many instances, a decision between alternatives must also
incorporate a rule for terminating the decision process, in effect
stopping the deliberation and committing to a choice. A large
body of theoretical and experimental work supports the idea that
a single mechanism accounts for both the termination of the
decision process and the ensuing choice. In a reaction-time (RT)
version of the motion direction discrimination task, subjects are
both faster and more accurate for stronger motion stimuli (Link,
1992; Roitman and Shadlen, 2002; Ratcliff and Smith, 2004). An
accumulation-to-bound mechanism, in which momentary sen-
sory evidence (furnished by direction-selective neurons) is accu-
mulated over time toward a criterion level or bound, explains the
choice and RT functions (Mazurek et al., 2003; Lo and Wang,
2006; Shadlen et al., 2006). Consistent with the accumulation-to-
bound mechanism, LIP neurons increase or decrease their firing
rates as evidence mounts for or against the direction associated
with the choice target in the response field (RF) of each cell.
Furthermore, just before the saccade, LIP neurons attain the
same level of activity, independent of motion strength. Hence, in
the RT task, where the stimulus viewing duration is dictated by
the subject, it is hypothesized that LIP marks both the beginning
and end of the decision process (Roitman and Shadlen, 2002;
Gold and Shadlen, 2007).

In other instances, however, subjects must base their decisions
on limited evidence, the availability of which is controlled by the
environment; or, they may be required to postpone their behav-
ioral response until it is solicited (see Fig. 1). Indeed, outside RT
studies, such cases include most of the behavioral tasks that have
been investigated by psychophysicists and neurophysiologists
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(Rieke et al., 1997; Parker and Newsome, 1998). The division
between the RT and fixed duration tasks is convenient for exper-
imental purposes, and it can be exploited to ask an important
question in sensory physiology: what is the termination rule for
perceptual decisions in general? An idea that arose from RT stud-
ies is that there is an activity threshold, which terminates the
decision process. In this paper, we consider the hypothesis that
the beginning and end of the decision process are governed by the
same neural mechanisms whether the animal or the environment
determines the viewing time.

This idea poses two critical challenges. First, the representa-
tion of accumulated evidence in LIP is delayed by at least 100 ms
compared with the activity of direction-selective neurons in the
middle temporal area (MT) (Britten et al., 1996; Bair et al., 2002;
Roitman and Shadlen, 2002; Osborne et al., 2004; Huk and
Shadlen, 2005). When stimuli are brief, it is not known whether
this delayed representation of accumulated evidence can contrib-
ute to the formation of decisions. A critical step for establishing a
role for LIP in such decisions is showing that decisions follow the
course of neural activity in LIP, respecting the delayed neural
representation. Second, when a behavioral response is solicited
by an exogenous cue or instruction, there can be a discrepancy
between the time of response and commitment to a choice. It is
not known when and how subjects commit to a choice in such a
situation.

In this study, we show that both of these challenges are met in
a simple perceptual decision about motion direction. Hence, the
accumulation-to-bound mechanism generalizes beyond simple
RT tasks. Additionally, we show that termination of a decision
process, while the stimulus remains visible, delimits the improve-
ment in performance that might otherwise accrue with pro-
longed stimulus exposures (Burr and Santoro, 2001). The finding
overturns a long-held assumption that such failure is a sign of
inefficient (leaky) integration (Grice, 1972; McClelland, 1979,
1993; Busemeyer and Townsend, 1993; Diederich, 1995, 1997;
Kim and Myung, 1995; Smith, 1995; Usher and McClelland,
2001; Ludwig et al., 2005; Busemeyer et al., 2006). Indeed, many
ideal observer analyses (e.g., signal detection theory, information
theory), which have been applied to perception and neurophys-
iology, presume that observers use all available stimulus informa-
tion. We show instead that the decision process may terminate
when the accumulated information reaches a critical level, even
when subjects are required to view the whole stimulus.

Materials and Methods
The data set consists of 51 neurons in the LIP of two rhesus monkeys
(both male; 9 and 11.5 kg) trained on a motion direction discrimination
task with variable stimulus durations. All training, surgery, and record-
ing procedures conformed to the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and were approved by the Uni-
versity of Washington Animal Care Committee.

Data acquisition and neuron selection. Each monkey was implanted
with a headpost, a scleral eye coil for eye monitoring (Fuchs and Robin-
son, 1966; Judge et al., 1980), and a recording cylinder (Crist Instru-
ments, Damascus, MD) suitable for magnetic resonance imaging (MRI).
The recording cylinder was positioned above the intraparietal sulcus in
the left hemisphere of one monkey and the right hemisphere of the other.
A plastic grid (1 mm spacing; Crist Instruments) was used for precise
placement of the recording microelectrodes (�1 M� impedance at 1
kHz; Alpha Omega, Nazareth, Israel). The electrodes were advanced
through a sterile stainless steel guide tube, which penetrated the dura and
was held by the grid. Postoperative MRI (1.5 T scanner) was used to
direct the placement of the electrodes within the recording chamber.
Signals from the electrode were amplified and filtered before sorting.

Action potentials of individual neurons were sorted either by using a dual
voltage-time window discriminator (Bak Electronics, Germantown,
MD) or by template matching (Alpha Omega). The time of action po-
tentials, trial events, and horizontal/vertical eye positions were stored at 1
kHz for analysis.

We targeted neurons in the ventral division of area LIP (LIPv) (Lewis
and Van Essen, 2000) by registering our MRI scans with a high-
resolution “flattened” scan distributed with the CARET software package
(Van Essen, 2002). Neurons in LIPv tend to exhibit sustained activity in
delayed and memory guided eye movement tasks (Bracewell et al., 1996).
We screened 59 neurons with this property (memory-delay period, 600 –
1500 ms). Of these, all but eight exhibited similar patterns of response
during the motion task. We excluded these neurons from the analysis,
because they did not exhibit a clear stereotyped dip after onset of random
dot motion, or they were uninformative during decision making. During
data collection, we also used a visually guided delayed saccade task to
targets in and out the RF of the neuron. These trials were identical to the
memory-saccade task, except the target remained visible until the end of
the trial (a saccade to the target).

Motion direction discrimination task. Each trial began with the appear-
ance of a fixation point (FP) (0.3° diameter) at the center of the display
monitor. The monkey was required to maintain its gaze to within �1.5°
of the FP so long as it was visible on the computer monitor. After 200 –
600 ms of stable fixation, two red targets appeared on opposite sides of
the screen. During recording sessions, one of the targets was located in
the response field of the recorded LIP cell. After a random delay (250 –
600 ms), the dynamic random dot stimulus appeared within a 5° circular
aperture centered on the FP. The motion stimulus is described in detail
previously (Roitman and Shadlen, 2002; Gold and Shadlen, 2003). The
percentage of coherently moving dots in each trial was chosen randomly
from the following values: 0, 6.4, 12.8, 25.6, and 51.2%. The net direction
of motion was toward one of the two targets. The stimulus duration was
sampled randomly from a truncated exponential distribution (range,
80 –1500 ms; mean, 330 ms). The flat hazard rate associated with this
distribution of random durations minimizes the monkey’s ability to an-
ticipate the end of the trial (Ghose and Maunsell, 2002; Janssen and
Shadlen, 2005).

After the termination of the motion stimulus, the FP was extinguished.
This event (the Go signal) instructed the monkey to initiate an eye move-
ment to one of the choice targets to indicate its decision about the direc-
tion of motion. In half of the trials, the Go signal coincided with offset of
the motion stimulus. In the remaining trials, a random delay (500 –1000
ms; approximately exponential) period intervened between motion off-
set and the Go signal. All trial types were randomly interleaved. The
saccadic eye movement had to be initiated in �500 ms from the Go
signal. The monkey received a liquid reward for each correct response
and in half of the 0% coherence trials. Errors were followed by 1 s exten-
sion of the 1.5 s intertrial interval. The monkeys chose one of the two
targets in almost all of the trials (99.1%). Analyses are based on 42,647
(physiology and psychophysics) plus 60,921 (psychophysics) trials on
this task.

In the motion pulse experiment, the motion coherence was increased
or decreased by 3.2% for 200 ms in every trial. For 0% coherence trials,
this change of coherence resulted in a weak net motion toward one of the
two targets during the pulse. To accommodate one pulse on every trial,
the minimum stimulus duration was increased to 280 ms (truncated
exponential distribution; range, 280 –1500 ms; mean, 650 ms). The pulse
began at a random time, with uniform probability density, between the
beginning of the stimulus and 200 ms before the end of the stimulus. The
pulse strength and duration were chosen to minimize the number of
conditions and to increase the power of the analysis. We used a weak
pulse strength, well within the variability of the ongoing motion, to avoid
a conspicuous event in the trial, which might promote a change in deci-
sion strategy. Because the motion pulses had no bearing on the reward, a
detectable motion pulse could encourage the monkey to ignore it. We
collected 18,017 trials from one monkey for this experiment.

Motion energy analysis. The motion energy in each trial was calculated
by using two pairs of spatiotemporal filters (see Fig. 4 A). Each pair was
either selective for the direction of coherent motion (i.e., toward Tin) or
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its opposite direction (the �x dimension below). Each directional filter is
formed as the sum of two space-time separable filters (Adelson and Ber-
gen, 1985; Shadlen and Carney, 1986). The spatial filters are even and odd
symmetric fourth-order Cauchy functions as follows:

f1� x,y� � cos4���cos�4��exp� �
y2

2�2
g
�

f2�x,y� � cos4���sin�4��exp� �
y2

2�2
g
�, (1)

where � � tan �1(x/�c). Along the x-dimension, the filters resemble
Gaussian-weighted sinusoids. The envelope and the period of the carrier
sinusoids are controlled by the order (fourth) and �c (0.35°). They are
windowed along the orthogonal ( y) dimension using a Gaussian enve-
lope (�g°). The two temporal impulse responses were based on a linear
filter of the following form:

g1�t� � �60t�3exp� � 60t��1

3!
�

�60t�2

�3 � 2�!�
g2�t� � �60t�5exp� � 60t��1

5!
�

�60t�2

�5 � 2�!� (2)

The constants in Equations 1 and 2 confer a spatiotemporal frequency
passband consistent with that of MT neurons (Movshon et al., 1988) and
centered on the speed of coherent motion in our display.

A linear motion filter is constructed by adding appropriate combina-
tions of the figj. For example, f1g1 	 f2g2 and f2g1 � f1g2 pass motion in the
	x direction. These two linear filters are in space-time quadrature. They
were convolved with the three-dimensional spatiotemporal pattern of
the dynamic random dot stimulus. The results of the two convolutions
were squared and summed together to extract the local motion energies
at each point in the image as a function of time. These local motion
energies were summated across space to calculate the motion energy over
the stimulus as a function of time. Finally, motion energies for opponent
directions were subtracted from each other to measure the net motion
energy in one direction (see Fig. 4 B, D).

To generate the predicted patterns of motion energy in Figure 4C, we
applied a leaky- and a bounded-accumulator model to motion stimuli
matching those analyzed from the experiment (other panels in Fig. 4). The
decision mechanisms were as follows: (1) choose the larger of two leaky
accumulators when the motion stimulus terminates, or (2) choose the per-
fect accumulator that reaches its bound first, even if the motion has not
terminated. Each model has two free parameters: (1) a coefficient (k) that
converts motion energy to the momentary evidence, and (2) a bound height
(B) or a leak time constant (�) for the bounded- or leaky-accumulation
models, respectively. These free parameters were adjusted to fit the behav-
ioral performance of the monkey (see Fig. 3) (bounded-accumulation, k �
0.46, B � 19.9; leaky-accumulation, k � 0.45, � � 298.5 ms). Both models
achieve good fits to the data in Figure 3, although a model comparison favors
bounded accumulation (Bayes information criterion, 59.5; Bayes factor,
8.35 
 1012). Importantly, the free parameters of the models were not cho-
sen to fit the motion energy profiles depicted in Figure 4D. Thus, the fitting
ensures that the predictions are based on mechanisms that are compatible
with the behavioral observations.

Analysis of behavioral data. The probability correct values shown in Figure
3 were calculated by dividing the trials into 20 quantiles (bins) based on
stimulus duration. The probability of a correct response was calculated for
each coherence level in each bin. Therefore, the data points in Figure 3
represent equal number of trials (1/20 of the total). The number of stimulus
duration bins was not crucial for the results, and similar results were ob-
tained for different bin numbers. The data from each bin were fit by a psy-
chometric function of coherence (Quick, 1974) as follows:

P�C�t1�t�t2
� 0.5 � 0.5�1 � exp� � � C

�t
� �t�� , (3)

where �t and �t are the fit parameters, and C is the coherence level. The
value of �t is the discrimination threshold and corresponds to the coher-

ence level that elicits 81.6% correct responses. �t determines the steep-
ness of the psychometric function for a particular threshold. The fits to
Equation 3 were obtained using maximum likelihood. The discrimina-
tion thresholds were similar for delay and no-delay trials. The data for the
two trial types were combined for the calculation of discrimination
thresholds (�t) and for the motion energy analysis (see Figs. 3, 4). Similar
results were obtained for each trial type individually.

To find the stimulus durations for which the accumulation process
deviated from perfect, we fit a bilinear function to the 20 discrimination
thresholds. The first line, which was constrained to a slope � �0.5, was
fit to the first n data points (see Fig. 3B, red line). The second line was fit
to data points n to 20 and could take any slope. The maximum likelihood
fit places the transition point at n � 15, which corresponds to stimulus
durations 403– 443 ms (mean, 420 ms).

In the motion pulse experiment, we measured the choice bias caused
by the pulses using the following logistic regression:

Pright �
1

1 � e���C	�1	�2I� , I � � 1 rightward pulse
�1 leftward pulse (4)

where, � and �i are fit parameters. C is the coherence level that takes
positive and negative values for rightward and leftward motion, respec-
tively. Therefore, �2 represents the shift of the psychometric function, in
units of motion coherence, caused by the pulses. The null hypothesis is
that motion pulses do not cause significant bias in the behavior
(H0: �2 � 0).

To measure the effect of pulse time on choice bias for the long-
duration trials, we extended Equation 4 to the following:

Pright �
1

1 � e���C	�1	�2I	�3Tp	�4TpI� (5)

where Tp is a group indicator for the pulse time. The trials were binned
into quartiles based on the start time of the pulse, and Tp took values 1– 4
corresponding to the quartiles. �4 indicates how the shift of the psycho-
metric function changes as the pulse time increases (H0: �4 � 0). This
value was significantly negative (�4 � �0.40 � 0.19) indicating a dimin-
ishing effect for later pulses. Also, �2 is significantly larger than 0 (1.51 �
0.52; p � 0.002), compatible with the results of Equation 4. �3 was
indistinguishable from 0 (�0.12 � 0.19; p � 0.26), indicating no inher-
ent effect of pulse time independent of pulse direction.

The fits to Equations 4 and 5 were obtained using maximum likeli-
hood. The fits for Figure 5C–F were obtained from Equation 4, but the
slopes of psychometric function (�) and �1 were constrained to be sim-
ilar for all quartiles. Similar results were achieved without this constraint.

Analysis of neural data. Average spike rates (Figs. 2, 6, left panels) were
calculated by aligning action potentials to the onset of the random dot
stimulus. Data from each trial were truncated 50 ms before the saccadic
eye movement, except for the analysis of bound crossing times (see be-
low). For each trial, the spike train was converted into a rate function by
convolution with [1 � exp(t/�r)]exp(t/�d), where �r, the rise time con-
stant, equals 1 ms, and �d, the decay time constant, equals 25 ms. The
peristimulus time histogram (PSTH) for each cell was calculated by av-
eraging the rate functions across the selected trials. The population PSTH
was calculated by averaging the PSTHs across the recorded cells. For the
analysis in Figure 6, short- and long-RT groups were formed separately
for each neuron and for each coherence level, thereby ensuring that an
equal number of trials contributed to the two groups. The traces shown
in Figure 6 were formed by averaging across the five coherence values for
a neuron and then combining these averages across the neurons. The
strategy permits each neuron to contribute equally to the averaged rates
shown. Other weighting schemes achieve similar results.

In addition to inspection of the firing rate functions, we estimated the
start of decision-related activity in LIP by analyzing the variance of the
firing rate across trials as a function of time from motion onset. We
measured the spike counts in 100 ms epochs from each trial. By shifting
this 100 ms window, we estimated a time-dependent mean and variance
of the counts across the trials, using all motion strengths and directions.
It is useful to consider the measured spike count variance as the sum of an
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input variance, attributable to variation in the
spike rate (across trials), plus the variance of the
spiking process. Under the assumption that
spiking is a point process, the input variance
may be estimated by subtracting 	 
 mean
spike count from the measured variance. 	 is an
idealized Fano factor that would determine the
spike count variance in the absence of any vari-
ability in the input. We set 	 � 1 for Figure 2 B,
but the results of analysis are not critically de-
pendent on the exact value of 	. For an accumu-
lation of noisy evidence (e.g., random walk), the
input variance is expected to increase linearly as
a function of time.

To determine whether the buildup rate of
neural activity was different for short- and
long-RT trials (see Fig. 6), we divided the Tin

trials for each cell and coherence level into
equally sized short- and long-RT groups. The
neural activity for each RT group was then aver-
aged across coherences and cells. A linear func-
tion was fit to the firing rates measured in a 150
ms window (6 nonoverlapping 25 ms periods to
allow more or less independent samples of firing
rate) beginning 207 ms after motion onset.

y � �1 � �2IT � �3t � �4ITt

IT � � 1 short-RTgroup
0 long-RTgroup , (6)

where y is the average population firing rate at
time t in the specified window, and �i is the set of
fitted coefficient estimated by least square
method. �4 represents the difference in buildup
rates for the short- and long-RT groups. The
null hypothesis is that the buildup rate is equal
for the two RT groups (H0: �4 � 0). �2 represents the difference in firing
rate at the beginning of the accumulation process for the two RT groups.
It was not significantly different for the three panels in Figure 6 ( p � 0.1).
For the analysis of the effect of baseline firing rate on response time, see
Equation 8.

For the analysis in Figure 7, we calculated the expected bound crossing
time of the firing rates on single trials resulting in Tin choices. The bound
height for each neuron was estimated using the trials that contained a
delay period. The sustained activity was measured in a 500 ms window
beginning 400 ms from the onset of the delay period, averaged for all Tin

choices. This sustained level of activity was similar for short-duration
stimuli (�200 ms; firing rate, 34.9 � 3.1 spikes/s) and long-duration
stimuli (�700 ms; firing rate, 35.3 � 3.2 spikes/s) and for different co-
herence levels. A three-way ANOVA with coherence and duration as the
fixed effects and the neurons as the random effect showed no significant
effect for coherence (F(4,270) � 1.07; p � 0.37) or stimulus duration
(F(1,58) � 0.36; p � 0.55). Each trial was assigned a bound-crossing time,
Tbc, by finding the first time when the smoothed firing rate exceeded the
bound height for at least 30 ms. The 30 ms window was used to balance
the need to detect bound crossings reliably while preserving enough
temporal precision to calculate the correlations. The procedure detected
bound crossings for 81.2% of individual trials for the short-duration,
no-delay stimuli, 95.2% of short-duration delay trials, and 94.4% of trials
for the long-duration stimuli. To ensure the positive correlations are not
attributable to the censorship of the neural responses before the saccade,
the search for the bound-crossing time was extended to 200 ms after the
saccade. Similar results were obtained without this extension. We also
used Monte Carlo methods to validate this analysis (Fig. S3, available at
www.jneurosci.org as supplemental material).

To test whether the correlation coefficients between Tbc and RT are
larger for short-duration trials with and without delay periods, we used
the following regression analysis:

z � �1 � �2C � �3I � �4CI (7)

where z is the transformed value of the correlation coefficients (Fisher z),
I is an indicator variable that is one for the no-delay trials and zero for the
delay trials, and C is the motion coherence. The z-transformed correla-
tion coefficients have normal distribution with known SEs, thus permit-
ting weighted regression. The null hypothesis is no different in the z
values for the two trial types (�3 � 0). No other terms were significant in
the analysis ( p 
 0.1), indicating that motion strength did not affect the
correlation.

We tested whether variation in baseline firing rate could explain the
correlation between Tbc and saccadic reaction times. We evaluated the
multiple regression model as follows:

RT � �1 � �2Tbc � �3b̃, (8)

where RT is the response time from the Go signal in a trial, and b̃ is the
standardized baseline activity in the trial in a 100 ms window before
the motion onset (i.e., the measured value expressed as a difference from
the mean for the neuron in units of sample SD). For all coherence levels,
�2 remained significantly different from zero ( p � 0.01; H0: �2 � 0).
Moreover, baseline firing rates did not affect RT ( p � 0.17; H0: �3 � 0)
for any coherence level.

Only the trials in which the monkeys completed the direction discrim-
ination task were used for the analyses. Except for the analysis of response
variance and the analysis of error trials, all graphs and analyses of neural
responses used only trials in which the monkey responded correctly. For
this purpose, all trials using the 0% coherent motion are considered
correct, although the reward was administered randomly in half of the
trials. The correlation between Tbc and RT, and also the difference in
buildup rate of activity varied continuously as a function of motion
duration. We chose to focus on the short (�200 ms) and longer (�700
ms) durations, that is the two ends of the continuum, to simplify the

Time

RF
Fixation

Targets on
Motion

Go
Eye movement

Delay

Fixation point
Targets
Motion

Eye position

Go
Eye movement

Figure 1. Direction discrimination task. After the monkey fixated, two choice targets appeared in the periphery. One of the
targets (Tin ) was within the RF of the neuron, indicated by the gray shading. The other target (Tout ) was in the opposite hemifield.
After a 250 – 600 ms delay period, dynamic random dots appeared within a 5° circular aperture centered on the fixation spot. The
stimulus remained on for 80 –1500 ms. Motion strength in each trial was selected randomly from a predefined set; the net
direction was either toward Tin or Tout. The disappearance of the fixation spot (Go signal) instructed the monkey to execute a
saccadic eye movement to one of the choice targets. The Go signal either coincided with termination of the motion stimulus
(no-delay trials) or followed a 500 –1000 ms delay period. A liquid reward was administered for choosing the target along the
direction of motion and in half of the trials with no coherent motion. All trial types were randomly intermixed.
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presentation of data. The results do not rest critically on this arbitrary
choice.

Results
Two rhesus monkeys were trained to perform a direction dis-
crimination task (Fig. 1). In each trial, a dynamic random-dot
motion stimulus was presented in one of two directions. The
direction, strength (coherence), and duration of motion were
varied randomly in each trial. The net direction of motion could
be toward one of the two targets, which were shown on the op-
posite sides of the visual field. One of the targets was in the RF of
the recorded neuron. After the motion stimulus, the fixation
point turned off immediately for half of the trials (no-delay trials)
or after a 500 –1000 ms delay period for the other half (delay
trials). The disappearance of the fixation point was the Go signal
for the monkeys. They reported their decision about motion di-
rection by making a saccadic eye movement to the target corre-
sponding to the direction of motion. The stimulus duration was
controlled by the experimenter and varied randomly from 80 to
1500 ms according to an exponential distribution.

We first describe the time course of decision-related neural
activity in area LIP and then turn to an analysis of the monkey’s
behavioral performance. We show that bounded accumulation of
evidence explains the performance on this task. We then return to
the neurophysiology to describe a neural correlate of bounded
accumulation predicted from the behavioral analysis.

A challenge to the role of LIP in the decision process
We recorded from 51 LIP neurons while the monkeys performed
the direction discrimination task. All neurons had spatially selec-
tive persistent activity on simple delayed eye movement tasks to
peripheral targets (see Materials and Methods). While the mon-
key performed the motion task, one of the choice targets (Tin) was
in the response field of the neuron; the random dot motion dis-

play and the other choice target (Tout) were
outside the RF. As shown in Figure 2A, the
firing rate of these neurons reflects both the
choice the monkey makes at the end of the
trial (Tin or Tout) and quality of evidence
(the motion strength) in support of these
choices (indicated by line color, Fig. 2A),
consistent with previous investigations
(Shadlen and Newsome, 2001; Roitman
and Shadlen, 2002; Huk and Shadlen,
2005). Thus, it has been suggested that LIP
represents a decision variable that mediates
the transformation of accumulated evi-
dence to a binary choice on this task (Gold
and Shadlen, 2007). It is the time course of
this activity that concerns us here.

Close inspection of Figure 2A reveals
that the firing rates associated with Tin and
Tout choices begin to diverge �200 ms after
motion onset (Kim and Shadlen, 1999;
Roitman and Shadlen, 2002; Huk and
Shadlen, 2005). This divergence marks the
beginning of the formation of the decision
variable represented in LIP. This time can
be estimated with greater sensitivity by
measuring the variance of the firing rate
across trials as a function of time. The vari-
ance increases when the neural activity di-
verges for different choices and stimulus
strengths. If LIP neurons reflect an accu-

mulation of noisy evidence from earlier visual areas, then a por-
tion of the measured variance, termed the “input variance” (see
Materials and Methods), should increase linearly as a function of
time (Fig. 2B). This increase in input variance was first evident
207 � 13 ms after the motion onset. It is the earliest point in time
that LIP can be said to represent information bearing on the
decision. Indeed, additional time must elapse before the evidence
can inform a decision. For example, the differences in mean re-
sponses of individual neurons do not achieve a common statisti-
cal criterion until 257 � 9 ms after motion onset (t test; p � 0.05).

The delayed representation of the accumulated evidence in
LIP poses a challenge to the role of LIP neurons in the formation
of decisions on the motion task. The latency of decision-related
activity is at least 100 ms longer than the emergence of directional
responses from neurons in areas MT and V1 (Britten et al., 1996;
Bair et al., 2002; Osborne et al., 2004), and it exceeds simple
saccadic latencies (Carpenter, 1988). It seems possible that the
brain could acquire enough information to reach a decision
about direction before LIP neurons even begin to exhibit
decision-related changes in their firing rate.

We therefore challenged the hypothesis that LIP plays a role in
decision making on this task by examining decisions based on
brief exposures to visual motion. In many trials, the monkey
received the Go signal long before the dissociation point in LIP
activity was reached. We measured the latency between onset of
motion and the monkey’s eye movement response on these
short-duration trials (ranging from 80 to 150 ms; 23% of trials).
Although the motion was brief, the eye movements were initiated
only after a relatively long latency. The distribution shown in
Figure 2C has its central tendency almost 400 ms after stimulus
onset (mean, 393 � 0.7 ms; interquartile range, 366 – 413 ms).
This is 150 –200 ms after the emergence of the decision build up
in LIP. In fact, the entire range of response times for these short
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trials relative to the neural activity is compatible with a process
that awaits the dissociation point in LIP activity before forming a
decision (Fig. 2D).

A possible concern is that the monkeys simply procrastinated
in these trials. We do not think this is likely for two reasons. First,
there was a clear incentive to respond quickly to increase the
reward rate. This is a potent incentive in our experience (Janssen
and Shadlen, 2005). Second, the same set of stimuli, matched for
coherence and exposure duration, gave rise to much faster re-
sponses on trials incorporating a delay period after the stimulus.
For the short-duration stimuli, the mean RT from the Go signal
was 272.9 � 0.6 ms. Insertion of a delay period reduced this
latency by �50 ms (mean RT, 219.1 � 0.6 ms; t test, p � 10�8),
which is similar to the latencies of simple visually guided saccades
in our screening trials (220.7 � 0.8 ms).

Bounded integration of evidence
The build up of activity in LIP represents an accumulation of
evidence in favor of one or the other direction alternatives. The
stochastic motion stimulus used in these experiments produces a
stream of evidence samples that are statistically independent over
the time course of the trial. Were the accumulation perfect, it
would lead to an improvement in sensitivity (i.e., accuracy) gov-
erned by the square root of viewing duration. The data, however,
are only partly consistent with this prediction. When the dura-
tion of the stimulus increased, the probability of a correct re-
sponse improved for all coherence levels (Fig. 3A), but this im-
provement saturated for moderate stimulus durations. We
quantified this effect by extracting a threshold from the psycho-
metric functions obtained at each of the 20 time bins depicted in
Figure 3A. Figure 3B shows a clear decrease in discrimination
threshold (i.e., an increase in sensitivity) when the monkeys were
provided longer viewing durations. A square root of time im-
provement in the accuracy would result in a slope of �0.5 on the
log–log graph in Figure 3B. Although the data approximately
conform to this prediction for the shorter-duration stimuli
(�420 ms), there is a clear deviation from this relation at longer
durations. It is as if for the shorter-duration stimuli the monkey
used all the available information, but for the longer durations,
the information was used only partially.

There are two possible explanations for this departure from
perfect integration. The first possibility is that subjects accumu-
late the information throughout the trial, but part of the accumu-
lated information leaks away simultaneously as time goes by. This
“leaky accumulator” hypothesis has been suggested previously
(Smith, 1995; Usher and McClelland, 2001; Busemeyer et al.,
2006) and is widely assumed to account for psychophysical per-
formance, although it has not been tested directly, to our knowl-
edge. An important prediction of this hypothesis is that the in-
formation acquired later in a trial should exert a larger influence
on the subject’s choice than the information acquired earlier,
which has “leaked” away by the time the decision is rendered.
Thus leaky integration explains the diminishing improvement on
long duration trials, because it posits that information presented
at the beginning of the trial is lost, at least partially.

The second possibility is that subjects accumulate informa-
tion only up to a point when the decision process terminates,
which could occur through an explicit bound (Link, 1992; Ma-
zurek et al., 2003; Palmer et al., 2005) or an implicit termination,
such as one mediated by attractor dynamics (Wang, 2002; Wong
and Wang, 2006). Thereafter, information is simply ignored. The
idea of a bounded accumulation is motivated by a confluence of
behavioral, neurophysiologic, and modeling studies in the con-

text of reaction-time tasks, where subjects control viewing dura-
tion (Luce, 1986; Link, 1992; Carpenter and Williams, 1995; Roit-
man and Shadlen, 2002; Mazurek et al., 2003; Ratcliff and Smith,
2004; Lo and Wang, 2006). It is possible that a bound might
terminate the integration process even when viewing duration is
controlled by the environment (here, the computer). One of the
important predictions of this hypothesis for our task is that the
information provided later in the trial should exert a smaller
influence on choice. Thus, bounded accumulation explains the
diminishing improvement in long-duration trials, because it pos-
its that information is simply ignored once the decision bound is
attained.

These two hypotheses can be differentiated by analyzing the
time course of the motion evidence leading to the monkey’s
choices (Fig. 4). The analysis is especially informative on trials
using the neutral motion stimulus (0% coherence) shown for
long durations (e.g., �700 ms). In each trial, a particular random
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dot stimulus gives rise to a noisy stream of motion information
that tends to fluctuate in magnitude and direction. For the 0%
coherence, the net motion energy (Adelson and Bergen, 1985;
Watson and Ahumada, 1985; Britten et al., 1993) is zero, on
average, as shown in Figure 4B. However, at any moment, in any
one trial, the stimulus contains motion energy toward or away
from the targets. In principle, these fluctuations ought to influ-
ence the monkey’s choices. We show that they do, and moreover
the time course of their influence is better explained by bounded
accumulation.

Figure 4C illustrates the predictions of the leaky and bounded
accumulator models. Both models were optimized to match the
accuracy results for the entire data set (see Materials and Meth-
ods). According to the leaky accumulator hypothesis, the motion
energy profiles associated with the two choices should differ to-
ward the end of the long trials. Early fluctuations in motion en-
ergy should have little bearing on the decision, because they fail to
accumulate (they leak away). According to the termination hy-
pothesis, the motion energy profiles should differ toward the
beginning of the longer trials. Late fluctuations in motion energy
should have little bearing on the decision, because they often
occur after the decision has terminated. The results depicted in
Figure 4D clearly favor the termination hypothesis. The random
fluctuations in motion energy that occur early during stimulus
viewing affect the choices, whereas later fluctuations are less ef-
fective. Here, we focused on the longer-duration trials merely
because they are long enough to have distinct early and late por-

tions. Similar patterns are apparent in the motion energy profiles
of shorter-duration trials and in the motion energy profiles of
trials with �0% coherence (data not shown).

To verify the motion energy analysis and to provide a direct
test for the differential effect of early and late evidence in our task,
we performed an additional experiment on one of the monkeys.
In this experiment, a 200 ms pulse of 3.2% coherent motion was
introduced at a random time on each trial. Such weak motion
pulses have been shown previously to influence the monkey’s
choice on the reaction time version of the direction discrimina-
tion task (Huk and Shadlen, 2005; Wong et al., 2007). We mea-
sured the bias of the monkey’s choice for the rightward and left-
ward pulses. To allow inclusion of pulses on every trial, we
extended the minimum stimulus duration to 280 ms. The motion
pulses significantly biased the monkey’s choice toward the pulse
direction (Fig. 5A) (psychometric function shift across all trials,
1.3 � 0.1% coherence; p � 10�8) (Eq. 4). Importantly, these
pulses were more effective when they were presented earlier in the
trial. To demonstrate this, we examined all the trials lasting 700
ms or longer. As shown in Figure 5C–F, the early pulses caused
significantly larger biases than the late ones (Fig. 5B) ( p � 0.018)
(Eq. 5). In fact, the bias caused by the late pulses was indistin-
guishable from 0 (third quartile: shift, 0.2 � 0.4%, p � 0.26;
fourth quartile: shift, �0.1 � 0.4%, p � 0.63). This direct exper-
imental manipulation confirms the conclusion drawn from the
analysis of motion energy: the brain ignores the later informa-

Figure 4. The effect of motion information on decisions diminishes at longer viewing times. A, Spatiotemporal filters used in the motion energy calculation. The filters in the left and right columns
are selective for opposite directions of motion. The two filters in each column form a quadrature pair. Application of the filters permits extraction of the motion energy as a function of time in each
trial. B, Average motion energy for the 0% coherence trials with durations longer than 700 ms (n � 1811). Positive and negative values indicate rightward and leftward motion, respectively. The
shaded region indicates SEM. C, Expected separation of motion energy profiles for rightward (red) and leftward (blue) choices for a simulated bounded accumulator (top) and a simulated leaky
accumulator (bottom). In trials with long durations, leaky accumulation would render information at the beginning of the trial irrelevant, whereas bounded accumulation would render information
at the end of the trial irrelevant. D, Separation of motion energy profiles for the monkeys’ rightward and leftward choices (same trials as in B).
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tion, presumably because it has already ter-
minated the decision process.

Neural correlate of bounded integration
in short-duration trials
The preceding analysis suggests that the
mechanism for decision making in long-
duration trials resembles the type of
bounded accumulation of evidence that is
thought to explain the speed and accuracy
of decisions in choice-reaction time tasks
(Ratcliff, 1980; Smith, 1988; Link, 1992;
Gold and Shadlen, 2007). We therefore hy-
pothesized that a similar process, reflected
in the activity of LIP neurons, might un-
derlie the monkey’s choices in this experi-
ment. Although the present experiment is
not a reaction time experiment, there is
variation, nonetheless, in the response
times relative to the Go signal. We have
demonstrated already that decision-related
activity in LIP precedes the behavioral re-
sponse and is predictive of the monkey’s
choice. We next asked whether the neural
activity is also correlated with the monkey’s
RT in a way that is expected from an
accumulation-to-bound mechanism.

We performed two analyses to test this
idea. In the first, we asked whether the rate
of buildup of activity in area LIP affects the
time of saccade initiation. We first consider
all Tin trials with stimulus durations of 200
ms or less in which the Go signal coincided
with offset of the motion stimulus (i.e., no-
delay trials). In these trials, the Go signal is
given before the accumulation begins in
area LIP. According to our hypothesis, the
variation in RT in these trials should reflect
the time it takes to reach a decision, hence
the rate of evidence accumulation. We
therefore divided the trials into two groups
based on the monkey’s RT relative to the
Go signal, termed short- and long-RT
groups (Fig. 6A). Each neuron contributed
half of its trials at each motion strength to the short- and long-RT
groups.

The firing rates for the two groups, averaged across coherence
levels, are shown in Figure 6A. The buildup rate of neural activity
was significantly larger for the trials in which the monkey re-
sponded faster (Fig. 6A) (slope change, 48.7 � 21.3 spikes/s 2; p �
0.02). This is consistent with our hypothesis that the LIP firing
rates reflect formation of a decision, which terminates earlier
when the buildup is faster. If this is correct, then we would expect
the differences in the buildup rates for short- and long-RT groups
to be absent when the decision is made before the Go instruction.

This prediction is supported by the graphs in Figure 6, B and
C. For short-duration trials (�200 ms) in which a 500 –1000 ms
delay period was introduced before the Go signal (i.e., delay tri-
als), the firing rate of the short- and long-RT trials essentially
overlapped from the beginning of the accumulation process (Fig.
6B) (slope change, �17.4 � 18.2 spikes/s 2; p � 0.18). Similarly,
the firing rates were overlapping for trials with stimulus dura-
tions of 700 ms or more (Fig. 6C) (slope change, �6.6 � 19.0

spikes/s 2; p � 0.37). The absence of a correlation between
buildup rates and response times in Figure 6, B and C, can be
explained if the decision process has terminated before the Go
instruction on these trials. For the trials comprising all three pan-
els of Figure 6, decisions probably arose faster when LIP activity
built up faster. However, faster decisions only affect the measured
RT in Figure 6A. For the other panels, the variation in RT after
the Go signal does not reflect the speed of decision formation.
The traces in Figure 6, B and C, are overlapping, because they are
formed from a random collection of faster and slower decisions.
Indeed, they remain overlapping for the duration of the trial.

In a second analysis, we measured a correlation between the
monkey’s RT and an estimate of the end of the decision on single
trials. The estimate of the decision time was obtained in two steps:
(1) the spike discharge was smoothed to obtain a continuous
estimate of spike rate, and (2) this rate estimate was compared
with a decision criterion or bound. The bound height for each
neuron was estimated using the sustained level of firing rate mea-
sured during the waiting period between offset of the stimulus

−50 −25 0 25 50
0

0.25

0.5

0.75

1

Motion strength (%coh)

P
ro

po
rt

io
n 

of
rig

ht
w

ar
d 

ch
oi

ce
s

 

 

0

0.5

1

−20 0 20
0

0.5

1

−20 0 20

Pulse time < 175 ms Pulse time:  175-362 ms

Pulse time: 362-563 ms Pulse time > 563 ms

Motion strength (%coh)

P
ro

po
rt

io
n 

of
rig

ht
w

ar
d 

ch
oi

ce
s

0 200 400 600 800

−0.5

0

0.5

1

1.5

Pulse time (ms)

S
hi

ft 
(%

co
h)

A

C

E F

D

B

Stimulus duration > 700 ms

rightward pulse

leftward pulse

Figure 5. Late motion pulses do not bias the monkey’s behavior, whereas early pulses do. In each trial, a weak motion pulse
(3.2% coherence to the right or left) was introduced at a random time. The range of stimulus durations was 280 –1500 ms to
accommodate these pulses. A, The probability of choosing the rightward target is plotted as a function of motion strength for all
trials with rightward (black) and leftward (gray) motion pulses. Positive and negative coherences correspond to rightward and
leftward motions, respectively. The motion pulses significantly biased the monkey’s choice toward their corresponding target.
This bias is quantified by the horizontal separation of the two functions, here equivalent to 1.3 � 0.1% coherent motion. B–F,
Effect of pulse time on pulse effectiveness. Trials with long stimulus duration (�700 ms) were divided into four groups of equal
size (quartiles) based on the pulse time. For each group, a pair of psychometric functions was constructed for the two pulse
directions (C–F ). The horizontal separation is plotted as a function of pulse time in B (error bars are SE of the shifts). The motion
pulses caused a significant shift in the psychometric functions for the earlier two quartiles (C, D), but not for the later quartiles (E,
F ). The plots in C–F focus on the middle of the coherence range to allow better visualization of the effect of the weak motion
pulses.

3024 • J. Neurosci., March 19, 2008 • 28(12):3017–3029 Kiani et al. • Accuracy Governed by Bounded Evidence Accumulation



and Go instruction on the delay trials. Of course, we do not know
the actual level of the bound, but according to our hypothesis, it
should be near the level of firing rate that a neuron attains at the
end of the long-duration stimuli or during the delay period after
the stimulus in the delay trials (Mazurek et al., 2003). Guided by
this assumption, we extracted the bound-crossing times, which
we take to be a noisy estimate of decision time, by finding the first
time when the firing rate on the trial exceeded the bound height
for at least 30 ms. We then asked whether this estimate bears any
detectable relationship to the measured variation in reaction
times, relative to the Go instruction.

A weak positive correlation is evident on short-duration
stimuli. For 0% coherence trials with no delay and short stim-
ulus durations (�200 ms), the monkey’s RTs relative to the Go
signal were positively correlated to the decision times esti-
mated from the neural data (Fig. 7A) (r � 0.16; p � 1.4 

10 �4, Fisher z). The correlation remained significant for all
coherence levels ( p � 0.01). The time from the estimated
neural decision to saccade initiation was 94.4 � 2.0 ms
(mean � SEM for all trials represented in Fig. 7 A, B). This
value depends on the choice of bound and the method for
smoothing the spike trains, but the sign and significance of the

correlation did not depend critically on
these assumptions. We also ensured that
the correlation was not explained by vari-
ations in baseline firing rates at the begin-
ning of the trial (see Materials and Meth-
ods, Eq. 8). The analysis indicates that
whatever effect the baseline activity may
have on the response time is exerted
through changing the bound-crossing
time.

Importantly, inserting a delay period be-
fore the Go signal reduced the correlation
between the bound-crossing time and the
response time (Fig. 7C,D) ( p � 0.0005) (Eq.
7). In fact, the correlation coefficients were
not significantly different from 0. Here, our
comparison is focused on the delay and no-
delay trials with short stimulus durations
because of the similarly large number of tri-
als. The lack of correlation is expected, be-
cause, according to the bounded accumula-
tion hypothesis, the decision has completed
long before the Go signal in these trials. The
variable RT in these trials is presumably ex-
plained by whatever mechanism accounts
for variable motor latencies in the absence of
a decision among alternatives (Carpenter,
1988; Hanes and Schall, 1996). The lack of
correlation in these trials also rules out po-
tentially trivial explanations for the correla-
tion such as increased vigilance, arousal, at-
tentiveness, or level of preparedness. Such
causes would have induced similar correla-
tions for the delay and no-delay trials. To-
gether, these analyses (Figs. 4 –7) support
the hypothesis that a bounded accumula-
tion of evidence, represented in LIP activity,
underlies the monkey’s choices even when
the stimulus duration is controlled by the
environment.

Errors are governed by the same mechanism as the
correct responses
In error trials, the LIP neurons reflected the monkey’s choice
rather than the direction of random dot motion (Fig. 8A): the
firing rate rose to almost the same level for the Tin trials indepen-
dent of whether the monkey’s choice was correct or incorrect.
Moreover, the rate of buildup for fast and slow errors greatly
resembled that of the pattern observed with fast and slow correct
choices. To appreciate this, we pooled error trials using the lower
range of motion strengths (6.4, 12.8, and 25.6%; errors were too
infrequent above this range). For short stimulus duration trials
(�200 ms) without a delay period, the buildup rate of neural
activity was significantly larger in the trials in which the monkey
responded faster (slope change, 59.4 � 31.2 spike/s 2; p � 0.05).
Similar to the correct trials, the difference in the buildup rate was
not significant for delay trials with short stimulus durations
(slope change, �11.6 � 29.6 spikes/s 2; p � 0.35). [The number of
error trials for the long-durations stimuli (�700 ms) was too few
to support a similar analysis.]

Finally, the analysis of neural bound-crossing times, estimated
from individual short-duration trials, indicated significant cor-
relation between the bound-crossing time and the monkey’s re-
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sponse time for the error trials (Fig. 8B).
These results suggest that the monkey com-
mits to an error, because the accumulated
evidence reaches a bound (in this case, the
wrong bound) perhaps because of noise in
the stimulus or noise in the neural re-
sponses in sensory areas.

Discussion
The present study extends previous work
on the neural basis of decision making in
two ways. It shows that the putative neural
correlate of a decision variable in LIP is
represented in a time frame that is compat-
ible with the timing of decisions. Also, it
shows that the decision process carries its
own rule for termination even when the
period in which evidence is available and
the time for action are under the control of
the environment.

When provided with more informa-
tion, the monkeys’ accuracy improved, but
by less than expected for perfect accumula-
tion of evidence (Fig. 3). By examining the
time course of motion information in the
display and by inserting brief motion
pulses at various times during motion
viewing, we determined that improvement
was curtailed, because the monkeys ig-
nored information late in the trial. They
did not appear to lose, or leak away, infor-
mation acquired at the beginning of the
trial (Figs. 4, 5). We hypothesize that this
diminishing contribution of information
to the decision (Luna et al., 2005) is a result
of application of a termination rule before
the Go signal, and that the termination rule is a bound on the
accumulated information. According to this hypothesis, the
monkey commits to one of the choices when the accumulated
evidence reaches a criterion level (Link, 1992; Mazurek et al.,
2003). A leaky accumulation process, although theoretically ca-
pable of describing the observed curtailed improvement of accu-
racy (Usher and McClelland, 2001; Ratcliff and Smith, 2004;
Busemeyer et al., 2006), is not supported in this task.

By ruling out the leaky accumulator, we do not disregard the
presence of all types of leak in the brain. All processes in the brain
are ultimately implemented by leaky devices: neurons. However,
it is possible to arrange leaky neurons in a recurrent network to
implement nearly perfect accumulators (Wang, 2002; Major and
Tank, 2004; Machens et al., 2005; Cisek, 2006; Ma et al., 2006;
Wong and Wang, 2006; Bogacz, 2007).

We focused on leaky accumulation as the main alternative to
bounded accumulation, but our findings rule out a much larger
class of alternative models. One possibility is that the accumula-
tion is simply limited in time. According to this alternative, the
subject commits to a choice at some point in time and ignores the
information arriving later. Another related possibility is that in-
formation is simply weighted less as time elapses. These models
can explain the early separation of motion energy profiles, similar
to Figure 4D. However, they fail to explain the LIP neural re-
sponses in our experiment, because they predict no correlation
between the neural threshold crossing time and RT. Moreover, a
more careful analysis of the accuracy data augurs poorly for the

plausibility of these alternatives. First, the time-limited accumu-
lation fails to account for the changes of discrimination thresh-
olds (Fig. S1, available at www.jneurosci.org as supplemental ma-
terial). Second, because they dismiss the concept of a bound on
accumulated evidence, all the alternatives to bounded accumula-
tion assert a testable prediction: a pulse delivered at a particular
time should affect the decision process identically for all motion
strengths. In contrast, the bounded accumulation model predicts
that the effectiveness of a pulse depends on both the time it is
delivered and the strength of the motion that it perturbed. This is
because for weaker motion strengths, the accumulated evidence
takes longer to approach the bound. Therefore, the pulse should
remain effective at later times for weaker motion than for stron-
ger motion. This is exactly what we observed (Fig. S2, available at
www.jneurosci.org as supplemental material).

We also found that, for each motion strength, the rate of rise
and the bound-crossing times of LIP neural activity were corre-
lated with the monkey’s RT for short-duration trials but not for
longer durations or delay trials (Figs. 6, 7). This pattern is also
consistent with an accumulation-to-bound mechanism (Ma-
zurek et al., 2003). It suggests that the accumulated evidence,
represented in LIP, tends to plateau or saturate at the longer
viewing durations used in previous experiments (Shadlen and
Newsome, 2001). LIP appears to play a similar role whether the
time course of evidence bearing on the decision is controlled by
the subject or by the experimenter. Notably, despite the long
latency for the representation of accumulated evidence in LIP,
activity in this structure preceded the monkey’s behavioral re-
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when the firing rate first exceeded a threshold specified by the sustained level of activity of the cell in the delay period (see
Materials and Methods). A, Relationship between RT and Tbc for 0% coherence trials with short durations (�200 ms) and no
delay period. Each point represents one trial. The confidence ellipse is stretched 1.5 
 SD along the principle components of the
data points. B, Pearson’s correlation coefficient of RT and Tbc for the five motion strengths. Error bars represent the 95% confi-
dence interval. C, D, Same as A and B for trials with a 500 –1000 ms delay between the end of stimulus and the Go signal (same
range of stimulus durations as in A and B).
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sponses even for extremely short stimuli. The finding is consis-
tent with a recent microstimulation study, which supports a
causal role for LIP in the decision process on this task (Hanks et
al., 2006).

It is remarkable that the decision times estimated from the
spike discharge on single trials should have any detectable rela-
tionship to the response times measured behaviorally. After all,
the behavior is undoubtedly controlled by many neurons, and the
estimates of bound-crossing times from a single neuron in each
trial are highly variable. Thus, it is not surprising that the slopes of
regression between the bound-crossing time and the monkey’s
response time are �1, the value that might be expected for a
mechanism that controls the decision. Additionally, for trials
with fast neural bound crossings, the monkey’s response time
cannot decrease proportionally, because it is limited by the motor
preparation delay and the time needed to detect the Go signal.
Like other weak trial-by-trial correlations between neural activity
and decisions, the observed correlations are probably explained
by the tendency of neurons with similar response characteristics
(in this case, RFs) to covary in their variable discharge (Zohary et
al., 1994; Shadlen et al., 1996; Parker and Newsome, 1998; Pezaris
et al., 1999).

The distribution of stimulus durations in our task helped us

identify the termination rule. We used exponentially distributed
durations, which prevented monkeys from expecting the end of
stimulus and encouraged them to start the decision process as the
motion stimulus appeared (Janssen and Shadlen, 2005). Such
temporal alignment of the decision process to an experimentally
controlled reference time is necessary to explore when and how
the decision process terminates. In contrast to this approach, a
stimulus duration that is fixed or predictable (Britten et al., 1993;
Shadlen and Newsome, 2001; Parker et al., 2002; DeAngelis and
Newsome, 2004; Krug, 2004; Krug et al., 2004; Uka and DeAnge-
lis, 2004) would allow subjects to start the decision process at
times other than the beginning of stimulus. Such temporal smear
across different trials could lead to the incorrect conclusion that
subjects use the information throughout the whole stimulus pre-
sentation. The important point is that when the experimenter
controls the duration of a stimulus, the brain may or may not
exploit the extra time to its advantage. The policy that governs
decision time is presumably the setting of the bound on the evi-
dence. This bound establishes the trade off between accuracy and
speed of decisions. The latter is measured when the decision is
coupled to an immediate action, as in RT tasks. However, when
the experimenter (or the environment) controls the stimulus du-
ration, the same considerations appear to be in play, although the
decision time is covert.

Such flexibility is essential for adjustment to the complexities
of the real world. The stochastic function underlying the stimulus
in our task was stationary, not biasing the monkey to any partic-
ular period in time. In contrast, a nonstationary function, more
generally the nonstationarities of the real world, result in periods
of time with more reliable evidence than others. If the source of
evidence changes in a predictable way, for example, later evidence
might be more informative. We predict that in these situations,
the brain can flexibly change strategies to limit the evidence ac-
cumulation to periods with more relevant information, not nec-
essarily the beginning of the stimulus. This possibility is an inter-
esting direction for future research, especially in the light of our
current finding that subjective stopping rules generalize beyond
the setting of reaction time tasks.

Thresholds and accumulation to thresholds seem to be widely
used in neural mechanisms, from spiking of individual neurons
(Gerstein and Mandelbrot, 1964; Ricciardi, 1977; Shadlen and
Newsome, 1994) to higher brain functions. Thresholds are in-
volved in decision making (Laming, 1968; Link and Heath, 1975;
Smith, 1988; Ratcliff et al., 1999; Reddi and Carpenter, 2000;
Shadlen and Gold, 2004), target selection, and saccade initiation
(Hanes and Schall, 1996; Schall and Thompson, 1999). They may
be useful for the perception of temporal intervals (Leon and
Shadlen, 2003; Janssen and Shadlen, 2005) and contribute to
learning. They are even hypothesized to play a role in memory
retrieval (Ratcliff, 1978; Wagner et al., 2005). The use of a thresh-
old would necessitate mechanisms for detection of threshold
crossing. In our task, a potential candidate is an interconnected
network that includes LIP and the basal ganglia (Lo and Wang,
2006). This circuitry can detect the bound crossing in LIP activity
and is capable of implementing a flexible bound, which is neces-
sary for adjustable behavior in a complex environment (Link,
1992; Mazurek et al., 2003; Ratcliff and Smith, 2004; Palmer et al.,
2005).

In fact, such a threshold-crossing mechanism together with a
recurrent accumulator network (Cisek, 2006; Ma et al., 2006;
Wong and Wang, 2006; Bogacz, 2007; Wong et al., 2007) could
explain many of the phenomena touched on here. Some of these
recurrent networks (Wang, 2002; Wong and Wang, 2006) have
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attractor states that implement a decision termination without an
explicit bound, although they too need a mechanism to detect
absorption to the attractor state to initiate an action (Kiani et al.,
2006; Lo and Wang, 2006). Such a mechanism is indispensable,
particularly for reaction time tasks and for the short-duration
trials in the task described in the current paper.

The presence of a termination rule invites us to revisit the contri-
bution of sensory neurons to decisions. For stimulus durations of 2 s
in our task, Britten et al. (1992) have shown that individual monkey
MT neurons can perform as well as the monkey, provided that the
activity of the neuron is averaged over the full stimulus presentation
period. However, as demonstrated here, monkeys base their deci-
sions on accumulation of evidence for much shorter durations.
Thus, we predict that if the neural activity was averaged over the
relevant period on each trial, individual neurons would perform
substantially worse than they do from 2 s worth of information and
therefore substantially worse than the monkey (Cook and Maunsell,
2002; Mazurek et al., 2003). Similarly, the relationship between trial-
to-trial variability in the firing rate of sensory neurons and behav-
ioral choices [choice probability (Britten et al., 1996; Parker and
Newsome, 1998)] varies for relevant and irrelevant periods of neural
responses. Calculation of choice probability over long stimulus pre-
sentations mixes the relevant and irrelevant periods and leads to
underestimation. The similarity of the monkeys’ performance on RT
and fixed duration tasks (Roitman and Shadlen, 2002) adds further
support to our contention that the brain simply ignores additional
evidence that is available in the stimulus and in the firing of its sen-
sory neurons. The use of a termination rule is not a consequence of
training; we observed a similar diminishing effect of viewing dura-
tion in monkeys that were never trained on an RT task.

When the environment establishes a clear and predictable ep-
och for decision making, why should subjects make decisions
based on a fraction of the available information? Why forego the
increased reward that would accrue by improving accuracy? One
answer may be the important, but often overlooked, concept of
the sampling cost. Collecting evidence for reaching a decision
consumes limited mental resources and retards engagement in
other decisions or cognitive functions. When sampling of infor-
mation is costly, the brain must strike a balance between the
amount of collected information and the improvement of accu-
racy. Economists study this topic under the banner of satisficing
(Simon, 1959). A striking prediction of such a balance is that even
when subjects are not engaged in reaction time tasks, they will
limit the sampling of information. We show that subjects behave
in this way in our experiment, and we suggest a mechanism,
bounded accumulation of evidence, based on behavioral and
neural data. Our hypothesis unifies the decision mechanisms
used in RT and non-RT tasks.

More generally, termination rules allow the brain to cascade
states with complex dependencies on each other (Fine et al., 1998;
Caspi et al., 2004). Unlike simple behaviors, which are more or less
automatic, cognitive processes may be dynamically switched on and
off at will. Knowledge of when to start the next process presupposes
control over the termination of preceding states. Thus, the cost in
accuracy associated with ignoring available information may be off-
set by capacities that underlie the very flexibility of thought.
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Figure S1.  
Kiani, Hanks & Shadlen 
 
 
Comparison of bounded and time-limited accumulation models. The black dots show the 
monkey’s discrimination thresholds as a function of stimulus duration (same as Fig. 3). 
The red curves show the best fit of the bounded accumulation model (a) and the time-
limited accumulation model (b).  
In the bounded accumulation model, the noisy momentary sensory evidence, which is 
proportional to the motion coherence, is accumulated until a decision bound is reached. 
This model has two free parameters: the proportionality constant between coherence and 
average momentary evidence, and the height of the bound. In the time-limited integration 
model the momentary sensory evidence is accumulated for a fixed duration and the 
decision is made based on the final accumulated evidence. This model has two free 
parameters: the proportionality constant and the integration period. The figure shows the 
changes of discrimination thresholds as a function of stimulus duration in the best fit of 
the two models (red). The bounded accumulation fits the data much better. A model 
comparison between the time-limited integration and bounded accumulation models 
yields a Bayes factor of 8×10-15, indicating that the time-limited integration is inferior —
values smaller than 0.1 indicate strong evidence against a model, and values smaller than 
0.01 are considered decisive (Jeffreys 1961, The Theory of Probability). Similarly, the 
Bayes information criterion indicates a very large difference between the two models: 
64.9. The time limited integration requires the discrimination thresholds stay similar for 
all durations longer than the integration period, a feature that is absent in the data. It is 
also important to note that the best fit of the time limited accumulation model is achieved 
for an integration period of 484.0 ms, which is much larger than the mean stimulus 
duration, 330 ms, or the median, 269 ms.  
 
The fit of the time-limited integration model to data improves by assuming that the 
stopping time is not fixed, but variable. It is known that the sense of time passage follows 



Weber law. The time-limited integration model with variability at stopping time has, 
three free parameters: a Weber fraction and the two parameters of the model without 
variability. The best fit is achieved for an average stopping time of 602.1 ms. This model 
is still inferior to the bounded accumulation model with two free parameters (Bayes 
factor = 0.001; Bayes information criterion = 13.3).  



 
 
Figure S2 
Kiani, Hanks & Shadlen 
 
The impact of a constant motion pulse (3.2% coherence, 200-ms long) on the monkey’s 
choice depends on both the time it is delivered and the strengths of the motion that it 
perturbs. In the figure, the trials for each motion strength were divided into 10 bins based 
on the pulse time. Each data point shows the difference of probability correct for pulses 
toward and away from the rewarded target. At times later than 400 ms the pulse has little 
effect on the monkey’s choice, as demonstrated in the paper (Fig. 5). At intermediate 
times (e.g., ~200-300 ms), pulses that perturb intermediate and weak motion strengths 
lose their efficacy at different times with the effects persisting later for weaker motion 
strengths, consistent with a bounded accumulation of evidence. To test the statistical 
significance of this effect we performed the following logistic regression on the trials in 
which the pulse was delivered sooner than 400 ms. (The data were not binned for this 
analysis.) 
 

 

 
where  is the time of the pulse and C is the signed motion strength (positive for 
rightward and negative for leftward motion). The null hypothesis is that the effect of 
pulse as a function of pulse time is not influenced with motion strength ( ). 
However, was significantly negative (–8.48±4.28, p=0.02) indicating that the effect of 
the pulse diminishes faster for stronger motion. 
  



 
 
 
 

 
 
Figure S3 
Kiani, Hanks & Shadlen  
 
The positive correlation coefficients between Tbc and RT are not caused by the attrition of 
neural responses around the time of saccade. The figure shows the distribution of the 
expected correlation coefficients for 0% coherence trials when attrition is imposed on a 
distribution that has no real correlation (see below). The observed correlation in the data 
(red line) is significantly larger than the correlation expected by the attrition (p<0.001). 
 
The bound crossing time was detected in >80% of the trials, and its correlation with RT 
is, therefore, expected to be a good representative of the underlying process. However, 
the positive correlation observed in the data might be due to attrition of neural responses 
around the time of saccade. Attrition, when imposed on an uncorrelated 2D distribution, 
can cut out part of the distribution and produce an artifactual correlation. We used Monte 
Carlo methods to estimate the bias that would be caused by the attrition of the neural 
responses under the null hypothesis: zero correlation. For this analysis the response times 
and the bound crossing times were both measured relative to the Go signal. In the first 
step of the analysis, we found the bivariate normal distribution with zero covariance that 
maximized the likelihood of the observed cloud of data points under the censorship 
criterion dictated by the attrition: Tbc ≤ RT+170. The 170 ms was added to the RT 
because the neural traces extended 200ms after the saccade and, for the reliable detection 
of the bound crossing, we required the neural activity to stay above the bound for 30ms. 
This first step recovers the joint distribution of RT and Tbc under the null hypothesis of 
zero correlation. In the second step of the analysis, we sampled randomly from the 
retrieved bivariate normal distribution, respecting to the censorship criterion, and 
measured the expected correlation coefficient. For all motion strength, the correlation 
measured in our experiment was significantly larger than the correlation expected by the 
attrition (p<0.005). 


