
Neurons in many regions of the cerebral cortex alter their rate of
spike discharge in response to particular sensory stimuli, body
movements or cognitive states. These event-dependent changes in
spike rate are typically reproducible, especially when averaged
across experimental repetitions. However, the precise timing and
number of spikes produced by a single cortical neuron show sub-
stantial variability, even under highly controlled sensory or behav-
ioral conditions1–3. This variability in single neurons must be
attenuated for the cortex to represent, compute with and transmit
information with reasonable speed and accuracy.

One way to distill an accurate rate signal from noisy neurons
is to average the responses from many such neurons, thereby
obtaining a high-fidelity estimate of the mean spike rate at any
moment in time. This seems a reasonable solution, because the
cortex is organized into columns comprised of neurons that
exhibit similar rate modulations during sensory and behavioral
events. This columnar architecture is recognized as a ubiquitous
feature of the cortex4,5. It implies that first, any given rate signal
is represented by many neurons, and second, each neuron receives
input from many of its neighbors, thus obtaining many samples
of the signals it uses for computation. In principle, such redun-
dancy could allow the cortex to average away much of the vari-
ability seen in individual neurons.

In reality, however, the gain in fidelity achieved by averaging
activity from many neurons is likely to be limited by the fact that
variability is shared among different neurons. In simultaneous
recordings from two nearby neurons, it is often observed that a
spike in one neuron predicts a small increase in the probability
of a spike occurring in the other (within a few milliseconds). Such
spike time correlation, or synchrony, is an active area of research
for many laboratories interested in neural coding and computa-
tion6,7. One of the many possible functions of correlated spike
timing is to curtail the benefits of averaging that would normal-
ly accrue for independent signals8–10. For example, measurements
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time-varying signals. Brief cycles of sinusoidal modulation at frequencies above 115 Hz could not
be represented by an ensemble of hundreds of neurons whose interneuronal correlation mimics
that of the visual cortex. The spike variability and correlation assumed in our simulations are
likely to apply to many areas of cortex and therefore may constrain the fidelity of neural compu-
tations underlying higher brain function.

of the number of spikes produced by neighboring pairs of neu-
rons in the visual cortex (area MT) during repeated presentation
of visual stimuli yields correlation coefficients of r ∼ 0.15–0.20
(refs. 9,10). These studies conclude that the accuracy of the aver-
age spike count calculated from such weakly correlated neurons
would be only 2–3 times better than the accuracy obtained from
a single neuron, even if arbitrarily large numbers of neurons were
used to compute the average. Similar correlation levels have been
reported for nearby neurons in other regions of the cortex11–15,
suggesting that weak correlation—and its limiting effect on the
fidelity of average spike rate signals—is a common property of
cortical ensembles.

Here, we extend this principle to time-varying signals. The
spike rate is not a stationary quantity but varies as a function of
time to represent changes in the environment, the dynamics of
motor function and the evolution of neural computations. We
investigated the consequences of variability and correlation on
the ability of cortical ensembles to represent time-varying sig-
nals through their average spike rate. We developed modeling
techniques for simulating the spike discharge from ensembles of
neurons whose single-neuron variability and pair-wise correla-
tion in spike timing approximate the known statistics of cortical
neurons. We show that correlation within an ensemble causes
the rate signal obtained by averaging across the ensemble to retain
much of the temporal variability of single neurons. This vari-
ability limits the fidelity with which time-varying rate signals can
be represented and transmitted in the cortex.

RESULTS
Neural variability and correlation
We devised an efficient procedure to simulate the spike discharge
from an ensemble of cortical neurons with realistic single-neu-
ron and pair-wise statistical behavior. Our goal was not to devel-
op a realistic model of synaptic integration, but to mimic the

articles 

nature neuroscience •  volume 5  no  5  •  may 2002 463

©
20

02
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m



statistics of cortical spike discharge. The method is an extension
of so-called diffusion (or random walk) models developed by
several investigators to explain the variability of the inter-spike
interval2,3,16–20. It is based on the idea that cortical spike times
can be likened to the arrival times, or first passage times, of a par-
ticle diffusing toward a barrier. Our principal innovation here
was to construct n (>>1) correlated neural responses from the
same number of weakly coupled diffusion processes.

For each simulated neuron, a variable broadly analogous to
membrane voltage undergoes random steps toward and away
from spike threshold in the manner of a one-dimensional ran-
dom walk. The voltage steps simulate perturbations resulting
from synaptic currents arriving at the soma. Each step for the n
neurons is drawn from an n-dimensional Gaussian distribution
with a mean of zero, thereby mimicking a condition in which
excitation and inhibition are in approximate balance3. We manip-
ulated the rate of threshold crossing (spike rate) of a model neu-
ron by controlling the n standard deviation terms, thus altering
the average step size of the random walks. Modulation of the
standard deviation of voltage step size is analogous to mod-
ulation of the input spike rate, again assuming approximate
balance of excitation and inhibition. By adjusting the covari-
ance of the multivariate Gaussian distribution, we controlled
the tendency for any pair of processes to cross threshold in
approximate synchrony. Additional details of the model are
described in Methods.

Fig. 2. Correlation causes fluctuations in the ensemble represen-
tation of a signal with a constant spike rate. In these examples,
each neuron discharges at an average rate of 50 spikes/s. The
spike rate is intended to remain constant as a function of time.
(a) Raster plot (above) and ensemble rate histogram (below)
from 100 uncorrelated neurons. The dots in each row of the
raster represents the spike times from a single neuron in the
ensemble. The rate histogram is computed in 4-ms bins. (b) Same
for 500 uncorrelated neurons. (c) Same for 100 weakly corre-
lated neurons (mean r = 0.2 for this simulation). Ensemble rate
values above 150 spikes/s are truncated. (d) Same for 500 corre-
lated neurons (mean r = 0.2).
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The model neurons showed variability in spike timing similar
to that of real cortical neurons. The spike times and intervals pro-
duced by model neurons were quite variable, even when the
expected rate was held constant as a function of time (Fig. 1a).
The inter-spike interval distribution (Fig. 1b) was approximat-
ed by an exponential function except at the shortest intervals,
which are rare because of refractoriness. Like real cortical neu-
rons, the standard deviation of this distribution was slightly less
than the mean interval (c.v. (coefficient of variation) = 0.88; see
ref. 1). The number of spikes counted in an epoch showed a con-
stant ratio between the variance and mean (geometric mean ratio
= 0.81; Fig. 1c), also consistent with cortical spike statistics. The
magnitude of variability was, however, lower by approximately
a factor of two than that seen in real cortical neurons3,12,21,22 (see
Discussion concerning this discrepancy; we note, however, that
our underestimation of variability in populations of neurons ren-
ders our conclusions more conservative).

The model neurons also mimicked the temporal correlation in
spike timing seen in real cortical neurons. This is shown by the
cross-correlogram (CCG), which plots the relative probability
that two neurons will emit spikes together as a function of the
time separating the spikes (Fig. 1d). The narrow central peak cen-
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Fig. 1. Model neurons mimic the variability and correlation of neurons
in cortex. The examples in this figure were generated using model neu-
rons that discharged at an average rate of 50 spikes/s. (a) A pair of spike
trains with realistic variability and correlation. Although the simulated
spike rate is constant on average, there is considerable variability in spike
timing. (b) Inter-spike interval (ISI) distribution. The average interval was
20 ms (s.d. = 17.6 ms). (c) Relationship between mean and variance in
the number of spikes produced in an epoch. Each point shows the vari-
ance and mean calculated for 100 repetitions of a fixed simulation
epoch; the epoch duration is chosen randomly for each point (range,
10–500 ms). The dashed line of equality is the expected relationship for
a Poisson process. (d) Correlation in spike timing. The CCG plots
the probability of coincidence between spikes from a pair of neurons
as a function of the time lag between spikes. The probabilities are
normalized so that chance coincidence is assigned a value of 0. The
area under the central peak (rCCG) yields a total correlation of 0.2
(see ref. 10). (e) Correlation in spike count. Each point represents the
number of spikes produced by each of two neurons during a single 1-s
epoch. The correlation ellipse is drawn at one standard deviation (r = 0.2).
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tered at zero lag indicates that when one neuron emitted a spike,
there was an increased tendency for the other neuron to do so at
roughly the same time. The width of the correlogram measured
at half height is 2 ms, and the tendency for correlated spike pro-
duction fell to chance at time lags of ±5 ms. Paired recordings
from nearby cortical neurons often have broader peaks10,11,13

(see final section of Results for discussion of the impact of widen-
ing the timescale of correlation). One consequence of correla-
tion was that the spike counts from a pair of neurons tended to
co-vary in any epoch. The scatter plot (Fig. 1e) shows spike
counts from a pair of simulated neurons measured in successive
1-second epochs. The correlation coefficient (r = 0.2) is consistent
with multiunit recordings from nearby neurons9,10,12,14,15,23,24.

Ensemble rate signals show temporal fluctuations
Our primary aim was to investigate the impact of variability and
correlation in spike timing on the representation of time-vary-
ing spike rate signals. To illustrate the problem, we first consid-
er the representation of a stationary signal (Fig. 2). Each neuron
in the ensemble discharges at a rate of 50 spikes/s on average,
but each shows sizeable variability in spike timing as is typical
of cortical neurons. If the ensemble is comprised of 100 inde-
pendent neurons (correlated only by chance), then the instan-
taneous average spike rate obtained from the ensemble reveals
little of the single-neuron variability (Fig. 2a, top). There are
small fluctuations in the ensemble rate shown here, but increas-
ing the number of neurons ameliorates this (Fig. 2a, bottom),
and the fidelity will continue to improve by √n as more neurons
are added. Note that the signal obtained by averaging the out-
put of uncorrelated neurons is equivalent to the average response
that is obtained experimentally by recording a single neuron
over multiple trials, assuming the same rate function underlies
each trial. Thus, the peristimulus time histogram (PSTH) derived
from independent repetitions in an experiment is commonly

assumed to reflect the population response of a cortical ensem-
ble on a single experimental trial. We will show, however, that
this equivalency rests on the unrealistic assumption that vari-
ability between neurons is uncorrelated.

When a realistic degree of correlation is incorporated into the
ensemble (Fig. 2b, top), shared fluctuations in spike timing caused
the ensemble’s average spike rate to undergo large temporal excur-
sions that dominate the 50 spikes/s signal. Moreover, because
spike-time variability is shared among the neurons, the variabili-
ty of this ensemble’s output was not reduced substantially by
adding more neurons (Fig. 2b, bottom). The magnitude of ensem-
ble rate fluctuations depends on the average pair-wise correlation
among neurons in the ensemble. Although each pair of neurons is
equally correlated in this example, the fluctuations would be as
large if some neurons were more strongly coupled than others,
provided the total covariance across the ensemble remained the
same. Because the neurons within the ensembles illustrated here
show fairly realistic spiking statistics (variability and correlation),
the noisy spike rate functions depicted in Fig. 2b represent the
kind of signals that might actually arise in cortical ensembles.

Temporal fluctuations degrade time-varying rate signals
We have shown that an ensemble spike rate value that should
remain steady at 50 spikes/s instead shows marked temporal vari-
ation. Real neural computation involves quantities that change
over time, so how do the observed spike rate fluctuations affect
the ensemble’s representation of time-varying signals? This prob-
lem may be illustrated by a neural ensemble representing a sinu-
soidally modulating signal whose frequency gradually increases
(an FM sweep; Fig. 3). To successfully represent the signal, mod-
ulations in firing rate must be distinguishable from stochastic
fluctuations in the absence of a signal. When the neurons in the
ensemble are uncorrelated (Fig. 3a), the modulations in ensem-
ble firing rate are readily apparent, even at the highest modulation
rates (100 Hz in this example), and this representation could
become arbitrarily more precise with larger ensembles.

However, in the presence of correlation (Fig. 3b), random fluc-
tuations in the average rate obscure the representation of the sinu-
soidal signal. Slow modulations can still be distinguished from a
constant rate, but, at high frequencies, the representation of the
sinusoid is difficult to distinguish from the representation of a
constant spike rate signal (compare ‘FM sweep’ to ‘constant’ in
Fig. 3b). In principle, given precise knowledge about the frequency
and phase of the sinusoid and the freedom to look over multiple
cycles, the FM signal could be extracted from the noisy represen-
tation in Fig. 3b. When each cycle must be transmitted without
prior knowledge of the underlying signal, however, the random
fluctuations in the ensemble firing rate limit the brain’s ability to
distinguish a rapidly changing signal from one that is constant.

To address this issue more quantitatively, we studied the
ensemble representation of brief modulations in rate (Fig. 4).
The problem can be formulated as an exercise in signal detec-
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Fig. 3. Random fluctuations in the ensemble spike rate can mimic a time-
varying signal. (a) Average rate from an ensemble of 500 uncorrelated
neurons. Top, ensemble spike rate when the expected rate modulates
sinusoidally between 0 and 100 spikes/s. The frequency of the sinusoid
sweeps from 20 to 100 Hz in 1 s; only the first and last 150 ms of the
sweep are shown. Bottom, same ensemble firing rate when the expected
rate is constant at 50 spikes/s. (b) Average rate from 500 weakly corre-
lated neurons (r = 0.2). Top, ensemble spike rate when the expected rate
modulates according to the FM sweep described in (a); bottom, ensem-
ble response when the expected rate is constant at 50 spikes/s.
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Fig. 4. Correlation-induced fluctuations limit the temporal
fidelity of the ensemble spike rate. (a) Representation of
brief sinusoidal signals by an ensemble of 100 uncorrelated
neurons. The solid curves show the expected firing rate at
three frequencies and amplitudes of the Gabor Wavelet
modulation. Unmodulated rate from a stationary signal is
also shown (Constant). Gray histograms show ensemble
spike rate. (b) Discrimination accuracy using an ensemble of
uncorrelated neurons. The frequency with which the Gabor
wavelet would be accurately discriminated from a constant
spike rate signal was calculated using signal detection theory
for each of the wavelets in (a). Threshold amplitude (Ath) val-
ues were derived from these functions by finding the wavelet
amplitude that supports 76% accuracy (colored dashed
lines). (c) Representation of brief sinusoidal signals by an
ensemble of weakly correlated neurons (mean r = 0.2). Same
conventions as in (a). (d) Discrimination accuracy using an
ensemble of weakly correlated neurons. Same conventions
as in (b). (e) Fidelity of the spike rate signal diminishes with
briefer, higher-frequency signals. The sensitivity of the brain
to ensemble rate fluctuations is estimated from the accuracy
curves (b and d). The log of sensitivity (log [(Ath)

–1]) is plot-
ted as a function of wavelet frequency, f. The colored points
correspond to the frequencies illustrated in (a–d) (uncorre-
lated ensemble, �; weakly correlated ensemble, �). Lines
are least-square fits to the data; x-intercepts estimate the
highest-frequency wavelet that the ensemble can represent
with 76% accuracy when the spike rate modulates between 0
and 100 spikes/s. For 100 uncorrelated neurons, the maxi-
mum detectable frequency is 576 Hz; this value would
increase if the ensemble contained more neurons. The maxi-
mum detectable frequency for 100 correlated neurons is
49.8 Hz; this value would not increase with larger ensembles.
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tion. If a neural ensemble discharges steadily at a mean firing rate
of 50 spikes/s, and an event—a stimulus or the result of some
computation—modulates the spike rate up and down with
respect to the background rate, how reliably can such modula-
tion be distinguished from the ensemble spike rate fluctuations
that arise stochastically?

The intended spike rate modulation in this exercise (the ‘sig-
nal’) consists of a brief sinusoid multiplied by a Gaussian envelope
(a Gabor wavelet):

(1)

The spike rate, s(t), is µ spikes/s except for an epoch centered at
t0 when it modulates sinusoidally about µ. Therefore, µ deter-
mines the dynamic range of the signal, which is at most 2µ
spikes/s. A controls the depth of modulation: when A = 0, there
is no modulation and when A = 1, s(t) varies sinusoidally
between ∼ 0 and ∼ 2µ spikes/s. The frequency and phase of the
modulation are controlled by f and φ, respectively, and the dura-
tion of the modulation is controlled by σ. We used signal dura-
tions equal to about 1 period of sinusoidal modulation (see
Methods). The Gabor wavelet has several properties that make it
suited to studying the representation of time-varying spike rate
signals. First, it imposes a balanced increase and decrease in spike
rate that would average to zero change if sufficiently blurred.
Second, it can be brief enough to introduce a single period of
modulation, which is essential for investigating the direct rep-
resentation of a modulating signal. Third, it is conveniently char-
acterized by the frequency of the underlying sinusoidal

 s(t) =     1 + Ae  sin(2πft –  )
–(t – t0)

2

2  2µ φσ

modulation, allowing us to describe the fidelity of the ensem-
ble spike rate as a function of temporal frequency.

Modulation of the ensemble spike rate can be represented
faithfully across a broad range of frequencies if neurons emit spikes
independently, but not if neurons are weakly correlated. For exam-
ple, Gabor wavelets at 16, 27 and 52 Hz are all apparent in the dis-
charge of an ensemble of uncorrelated neurons and are readily
distinguishable from an unmodulated discharge, even when the
modulation amplitude is small (Fig. 4a). In contrast, the wavelets
represented by the correlated ensemble tend to be obscured by
prominent rate fluctuations (Fig. 4c). These fluctuations make it
difficult to distinguish the modulated ensemble rates from the
ensemble rate associated with a stationary signal, especially for
high-frequency modulations (Fig. 4c). With this ambiguity in the
representation of a rapid modulation, the underlying signal is
unavailable to neurons reading out the ensemble rate.

To quantify the discriminability of brief sinusoidal modula-
tions from the random variations associated with a stationary
rate, we created a detector that takes the ensemble rate as input
and produces an output value that reflects the strength of sinu-
soidal modulation. The detector is optimal for sensing the Gabor
wavelet in the spike rate: it has precise knowledge of the time of
the wavelet (t0) and the shape of the waveform (f and σ). Only
the phase (φ) of the sinusoidal modulation is unknown. The
detector produces a scalar output value that measures the ampli-
tude of rate modulation at frequency f in the time window
defined by t0 and σ (namely, an envelope detector; see Methods
for additional details). Whether a detector of this sort could be
implemented in the brain remains an open question; our aim
here was to create a detector at least as sensitive as any neural
mechanism. ‘Accurate detection’ was met when our detector
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Fig. 6. Ensemble fidelity depends on the time scale and
magnitude of correlation. (a) Average CCG for pairs of
neurons in each of the five ensembles used to generate the
sensitivity plots in (b). The CCG widths at half-height are
given in the inset. Each CCG has the same area under the
central peak, yielding the same total correlation (rCCG =
0.2). Simulations use the method of random spike
sequences (see Methods). (b) Fidelity of the ensemble rep-
resentations of brief sinusoidal rate modulations using
neurons whose CCGs are represented in (a). Sensitivity is
derived using the same signal detection exercise as in Fig. 4
and plotted as a function of wavelet frequency (same con-
ventions as in Fig. 4e). Solid curves were obtained using
CCGs represented in (a) (corresponding colors). The
dashed curve shows the result using the linked random
walk method (width = 2 ms, rCCG = 0.2). (c) Average CCG
for pairs of neurons in five ensembles. Wider CCGs have
more area such that the total correlation between neuron
pairs increases with CCG width. Inset, data from pairs of
neurons recorded in area MT; regression line shows the
relationship between rCCG and width used to generate the
ensembles shown in this panel. (d) Fidelity of the ensemble
representations of brief sinusoidal rate modulations using
same neurons as in (c).

reported a higher value for an ensemble rate signal containing
the Gabor wavelet than for a rate signal of comparable magni-
tude and duration but containing no modulation (Fig. 4a and c,
‘Constant’). The exercise was thus designed to study the spike
rate representation of a single cycle of modulation that would be
lost if it were smeared over the epoch in which it occurs.

We measured the accuracy of detection across a range of fre-
quencies and amplitudes to find the threshold amplitude (Ath) for
each frequency, defined as the wavelet amplitude needed to pro-
duce detector responses that exceed the noise level (response to no
wavelet) by 1 standard deviation, resulting in a discrimination rate
of 76% (ref. 25; Fig. 4b and d). A threshold amplitude of 1 implies
that the spike rate must vary over the entire available range from 0
to twice the mean rate in order to transmit the wavelet with 76%
accuracy; the level of discharge in this exercise (a dynamic range
of 50 ± 50 spikes/s) was intended to mimic the high firing rates
seen in optimally activated cortical neurons. Hence Ath = 1 can be
interpreted as a rough upper limit for the encoding of a wavelet
within a specified dynamic range. The Ath values estimated for the
uncorrelated ensemble (Fig. 4b) are substantially less than 1 for
the frequencies used here, indicating that these wavelets can
be represented faithfully. In contrast, the Ath values measured
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for the correlated ensemble are much higher, approaching 1 at
52 Hz (Fig. 4d, blue curve), indicating that the full dynamic range
of the neurons would be required to represent this wavelet.

We used this detection exercise to estimate the temporal
fidelity of an ensemble rate code, given our assumptions. To do
this, we calculated Ath at a variety of modulation frequencies
and plotted the reciprocals (sensitivity) against f on a log scale
(Fig. 4e). The graph shows that sensitivity falls by the square
root of frequency (slope ≈ –1/2); this is a simple consequence of
there being fewer spikes in the briefer signals. Nevertheless, the
uncorrelated ensemble in Fig. 4e reliably transmits the rate mod-
ulation up to the highest frequencies used here (100 Hz), and
the sensitivity would continually improve as more neurons are
added to the ensemble (see Fig. 2). In contrast, the correlated
ensemble in Fig. 4e exhibits lower sensitivity at all frequencies,
failing to reliably transmit any signals faster than about 52 Hz.
Because adding more correlated neurons does not improve the
fidelity, the observed limitation can be interpreted as an upper
bound on the ability of a cortical ensemble like those we have
simulated to represent fast changes in spike rate within a range
of 0–100 spikes/s. We next consider the dependency of this lim-
itation on the assumptions in our model.
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Temporal sensitivity with more spikes
A decline in sensitivity is inevitable for signals that make use of
fewer spikes across the ensemble. We therefore investigated the sen-
sitivity of the correlated ensemble over a range of mean firing rates
and wavelet durations. As shown in Fig. 5, sensitivity improved
with increased firing rates and with broader wavelets. The improve-
ment along each of these dimensions was a consequence of hav-
ing more spikes available for performing the discrimination.

The improvement in fidelity obtained with the broadest
wavelets (Fig. 5, σ = 0.75 ⁄ f and σ = 1 ⁄ f) provides some insight
into how neural ensembles could escape the fidelity limits we
have derived. For these wavelets, our detector effectively aver-
aged the spike rate across several cycles of sinusoidal modulation
and is thus a specialized envelope detector capable of detecting
amplitude changes that last for several periods of modulation.
For signals of only one cycle, however, an ensemble of model
neurons showing variable spike timing and a weak tendency to
produce synchronous spikes is unable to reliably represent mod-
ulations occurring faster than ∼ 100 Hz, even when allowed to
modulate between 0 and 200 spikes/s. In the next section, we fur-
ther refine this limitation by exploring its dependency on the
time course of interneuronal correlation.

Temporal sensitivity with longer correlation time
The fidelity limitations exposed in the preceding analyses result
from the inability to average out noise that is shared by neurons
in the ensemble. This shared noise arises from the tendency of
neurons to emit a fraction of their spikes at approximately the
same time. Up to now, we have assumed that this tendency occurs
over an epoch of a few milliseconds. Although such precisely-
timed correlation is observed in cortex7,13, correlation is also
commonly found to occur over broader time scales10,11,26–28.
Spread out in time, correlated spikes might be less of an imped-
iment for signal averaging within short epochs. To address this
issue, we devised a second method for generating ensemble spike
discharge. We extended an existing algorithm29 that generates
random spike sequences with time-varying rate, to create an
ensemble of correlated spike sequences (see Methods).

We used this method, which allows any cross-correlation func-
tion, to explore the effect of a broader time-course of correlation
on temporal sensitivity (Fig. 6). As a variety of correlation time
scales have been reported10,11,13,26–28, we varied this parameter
between 2 and 50 ms, measured as the full width at half-height
of the CCG (Fig. 6a and c). The literature so far is also unclear
on the overall shape of the correlogram and hence the total
amount of shared variability (r). We therefore performed our
analysis under two sets of assumptions: (i) constant correlogram
area in which broader correlation functions are obtained at the
expense of height (Fig. 6a–b), and (ii) increasing correlogram
area with increasing width (Fig. 6c–d).

The cross correlation functions shown in Fig. 6a encompass
the range of correlation widths reported for pairs of nearby neu-
rons10,13,14,27. These functions are scaled along the vertical axis
so that the total pair-wise correlation (rCCG), measured as the
area under the central peak of the CCG10, is 0.2. When correlation
is nearly synchronous (Fig. 6a and b, blue curves), the sensitivi-
ty falls off rapidly as a function of modulation frequency and
drops to 0 at ∼ 50 Hz (Fig. 6b, dashed curve), similar to the ran-
dom walk model (Fig. 1e). When correlation is spread out in
time, sensitivity declines more gradually, allowing the ensemble
to represent higher frequency modulations. For the ensemble
with the broadest correlogram (Fig. 6a and b, black curves), rate
modulations can be accurately represented up to ∼ 150 Hz.

In theory, the cortex could spread out correlated spikes so that
their impact on temporal fidelity would be attenuated even fur-
ther (as long as the total shared variability remained constant).
When spikes are correlated over a broader time scale, however,
there is likely to be a stronger correlation between neurons.
Although this relationship has not been studied systematically in
different regions of cortex, measurements from neighboring neu-
rons in area MT show that as the time scale of correlation becomes
broader, the magnitude of correlation tends to increase (Fig. 6c,
inset; unpublished analysis of data in ref. 10; W. Bair, personal
communication). When correlation time and magnitude are cou-
pled in this way (Fig. 6c), the effect of broader correlation is
reversed: ensembles with the broadest correlograms exhibit the
worst sensitivity because they have the largest magnitude of cor-
relation (Fig. 6d), and the narrowest correlation produces little
impairment in fidelity because here r is nearly 0. The correlograms
shown here encompass the range observed in area MT, although
no correlograms were seen to be as narrow as our narrowest CCG
(2 ms). The geometric mean of the data gives a CCG width of 9 ms
with r = 0.21, yielding a frequency limit of 115 Hz (Fig. 6c and d,
green curves). If these data prove to be representative of pairs of
neurons in other brain areas, then the cortex would be unable to
represent signals that change substantially faster than this value.

DISCUSSION
The weak tendency of neighboring cortical neurons to discharge
spikes in a correlated manner has been observed in several brain
areas9,14,22,30. Correlation is probably a consequence of shared
connectivity3,11,12, but may be important for synaptic integra-
tion1,31–33 and perceptual and motor function34–36. Whatever its
ontogeny and function, correlation represents a departure from
independence and is therefore a barrier to signal averaging from
multiple neurons, limiting the accuracy of a neural ensemble to
represent stimulus features3,8–10.

Our findings extend this principle to time-varying signals.
We have shown that the average rate signal derived from weak-
ly correlated neurons undergoes large fluctuations as a func-
tion of time, even when the intended signal is changing slowly
(Figs. 2 and 3). These fluctuations resemble the brief modula-
tions in spike rate that are generally believed to represent
changes in sensory, motor or cognitive signals. If such a signal
were to change faster than about one cycle in 10 ms (∼ 100 Hz),
it would be indistinguishable from noise. Given the rather gen-
erous assumptions built into our detection scheme and the con-
servative values used to derive this limit, our estimate of fidelity
may be somewhat exaggerated.

The result can be interpreted as a temporal acuity limit for
spike rate signals in cortex. Analogous to acuity measures in other
domains, it implies that two events that are represented by
changes in the rate of discharge in an ensemble of neurons will
be blurred into one if they occur too close together in time (see
Supplementary Methods online for further elaboration of this
point). This could explain the inability to perceive high rates of
light flicker37 or flutter vibration38, and it might pose a limita-
tion to motor dexterity39. Similarly, it could explain why motion-
sensitive neurons in area MT fail to represent temporal
frequencies greater than about 60 Hz (ref. 40).

Our findings expose a commonly overlooked inconsistency
between signals carried in the cortex and data derived from sin-
gle-neuron recording experiments. Most cortical physiology exper-
iments involve recording from a neuron during repetitions of
sensory stimuli or behavioral responses. The spike discharge from
the neuron is typically averaged across many trials to generate a
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peristimulus time histogram (PSTH) that furnishes an estimate
for the instantaneous firing rate as a function of time. Because of
the redundancy of synaptic organization in the cortex, the spike
rate function from one neuron probably approximates the expec-
tation of the rate-versus-time function for each of the neurons in
a local ensemble. However, the PSTH would depict an actual signal
present in the brain if and only if the repeated measurements from
one neuron are equivalent to the average response from many neu-
rons on a single trial. Weak correlation between neurons implies
that this assumption (ergodicity) is incorrect; thus the PSTH sub-
stantially underestimates the variability of the ensemble.

Our conclusions rest on several approximations that warrant
examination. First, the variability in spike discharge from single
neurons was approximated by a renewal process (linked random
walks) or by random distribution of events (random spike
sequences). These two simulation methods differ in their mechan-
ics, and each has its advantages: the random walk method simu-
lates a process analogous to membrane voltage and assigns no
distinct status to correlated versus uncorrelated spikes, whereas
the random spike sequence method allows correlated spikes to be
distributed in time. The similarity in the performance of these
models (Fig. 6b) suggests that our findings do not depend on the
details of the simulation. Neither approximation is correct41, how-
ever, and the random walk method, in particular, underestimates
the variability measured in cortex. Real neurons are likely to exhib-
it greater variability, in part because spike rate is determined from
inputs that are themselves variable3. In principle, this discrepan-
cy is conservative with respect to our conclusions because any
additional variability should further limit the ability of the corti-
cal ensemble to represent time varying changes in rate.

Second, for most calculations, we allowed firing rates to vary
between 0 and 100 spikes/s. It is possible that neurons could
achieve higher firing rates and thereby escape the limitations
derived here (Fig. 5). As most cortical neurons do not achieve
this range except under ideal circumstances, our choice of
dynamic range was also conservative. Real ensembles of weak-
ly coupled neurons are likely to respond over a narrower
dynamic range, on average, and therefore achieve lower tem-
poral fidelity than we estimated.

Third, we mainly considered a narrow time scale for corre-
lated spike discharge, corresponding loosely to what is termed
synchrony. As shown in Fig. 6, if pairs of neurons share vari-
ability over a more prolonged time interval, then the effective
correlation is lessened in any brief epoch, enabling the ensem-
ble to represent rapid changes in rate. Data from area MT, how-
ever, shows that neurons with broader correlation times tend to
also have higher total correlation, leading to lower overall fideli-
ty (Fig. 6c and d). The correlations we used in our simulations
encompass the range observed in area MT, as the correlations
between neurons in the same column are relevant to this study.

Finally, both simulation methods made the conservative
approximation that correlation is acheived without temporal
smearing. An alternative method for broadening the correlation
would be to introduce temporal correlation in the individual
spike trains (for example, by smoothing the steps in the random
walk19). In separate simulations (data not shown), we have seen
that broadening the correlation time in this way produces lower
temporal sensitivity, as smoothing directly attenuates the repre-
sentation of high-frequency signals.

The limitations in signal fidelity that we describe here apply
to any computation in cortex that uses the average spike rate from
a network of weakly correlated neurons. Our findings do not
imply that neurons are unable to represent signals at higher fre-

quencies, only that they must do so using means other than the
ensemble spike rate (such as auditory processing in brainstem
nuclei42). Indeed, it has been suggested that computations more
sophisticated than averaging could actually benefit from the pres-
ence of correlated variability43. So why worry about a fidelity limit
for averaged spike rates? There are two reasons. First, evidence
from recording and stimulation experiments indicates that sen-
sory signals encoded in the spike rate of nearby neurons directly
affect perception44–47, and it is among such ensembles of nearby
neurons that correlated discharge has been demonstrated9,13,14,23.
Second, temporal modulations in spike rate cannot be detected
during the inter-spike interval from a single neuron. Thus, when-
ever spike rate enters a computation, however sophisticated, it is
likely to do so as an ensemble average.

The fidelity limits exposed here contrast with the speeds of
processing typically seen in computing devices. These limits arise
from the variability and correlation in spike timing that result
from the highly interconnected architecture of cortical
columns2,3. Why would the brain employ a computational archi-
tecture possessing such a sluggish CPU? The answer has been
alluded to already: the abundance of connections within a col-
umn causes each cortical neuron to receive a barrage of synap-
tic input for each spike it produces48, which furnishes it with a
nearly continuous estimate of incoming rate signals, even when
individual inputs are firing at low rates. This, in turn, allows cor-
tical neurons to perform powerful and flexible computations in
real time using signals produced by other cortical neurons. Lim-
ited temporal fidelity thus seems to be a necessary consequence of
the remarkable computational complexity in the cerebral cortex.

METHODS
Random walk model. The spike train from each simulated neuron is
modeled by the first passage times of a diffusion process defined as fol-
lows: a state variable, Vk(t), analogous to the membrane voltage for neu-
ron k, wanders randomly between a lower reflecting boundary and an
upper absorbing barrier representing spike threshold. Every 0.1 ms, the
value of Vk changes by a random value zk,t chosen from a normal distri-
bution with mean 0 and standard deviation ζk, abbreviated N(0,ζk). In
addition, the state variable decays toward the lower boundary with time
constant of 10 ms. Whenever Vk(t) crosses the upper threshold, a spike
occurs and the state variable is reset to the lower reflecting boundary. A
brief refractory period is imposed by raising the threshold barrier and
triggering a first-order decay (time constant 0.5 ms). The rate of thresh-
old crossings is controlled by changing the magnitude of ζk; the exact
relationship between spike rate and ζk was derived empirically through
simulation, and controlled as a function of time to produce a desired
time-varying spike rate signal. The spike times from this model approx-
imate first passage times of a previously defined stochastic process17,19.

We produced an ensemble of neural spike trains by simulating n dif-
fusion processes at once (k = 1...n). Using bold to represent n-dimen-
sional vectors, we simply update all the v(t) at each time step by picking
zt from an n-dimensional multivariate normal distribution, N(0,Σ),
defined by the density

(2)

where Σ is an n by n covariance matrix,

(3)

Each of the zk,t that provides the random steps for any one diffusion process

Σ =  
ς1

2            ρ1,2ς1ς2       . . .     ρ1,nς1ςn

ρ1,2ς1ς2             ς2
2             ρ2,nς1ςn...

ρ1,nς1ςn ρ2,nς1ςn                     ςn
2

         

. . .

f(z) = (2π)     |Σ|     e   
– — n

2
– — 1

2
– —z´Σ–1

z1
2
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is the kth marginal distribution of the multivariate normal. By choosing
suitable values for ρij, we can impose a desired degree of correlation among
the diffusion processes. Intuitively, ρij is related to the fraction of inputs
shared by neurons, but it should not be confused with the correlation coef-
ficient, r, that describes the relationship between spike counts from pairs of
neurons. An efficient method for choosing z in each time step is to choose
a vector x of n independent values from the normal distribution, N(0,1),
and multiplying x by the matrix square root of Σ:

(4)

The elements of z (distributed as N(0,1) but with covariance Σ) are then
used to perturb each of the k diffusion processes. An advantage of the
random walk method is that spiking correlation arises as a result of
covariance in the underlying Gaussian perturbations; hence, correlated
and uncorrelated spikes are produced by the same process. A disadvantage
is that it gives rise to synchronous spikes over a short time scale (~2 ms).

Random spike sequences. We used a statistical procedure for generating
random sequences of spike times that conform to a desired function of
spike rate versus time29. The procedure distributes spike times accord-
ing to a probability density defined by the desired spike rate function.
This is achieved by using inverse probability49 (generating uniform devi-
ates and solving numerically for the inverse of the cumulative spike rate
distribution) and repeating the procedure to produce the desired num-
ber of spikes. To impose a refractory period, a spike that falls within tisi of
another spike is redrawn with probability pisi that is greatest for small
values of tisi and falls to zero after 2 ms. We have extended this procedure
to simulate an ensemble of neurons and modified it to achieve correlation
between the neurons. This modified procedure allows us to distribute
correlated spikes over any desired time scale.

First, the total number of spikes is selected for each neuron. The spike
count for the kth neuron, denoted ck, is normally distributed with expec-
tation and variance equal to the mean spike rate (m) multiplied by the
simulated duration, T. Correlation in spike count across the ensemble is
achieved by drawing c (the n-dimensional vector of counts, ck) from a
multivariate normal distribution, N (mT, Σ), where mT is an n-dimen-
sional vector of mT values and Σ is an n by n covariance matrix with
terms mT on the diagonal and 0.2T√(mimj) for the off-diagonal (covari-
ance) terms. This ensures that on average the counts have variance equal
to the mean and correlation coefficient equal to 0.2.

Each neuron’s spike sequence is then constructed from two sources. A
proportion of the neuron’s spikes (uk) are assigned random times using
the method just described; hence, the times of these spikes are indepen-
dent from one neuron to the next. To generate correlated spikes, the
remaining vk = ck – uk spikes are assigned times by drawing them from a
common source. To obtain this common source of spikes, a dummy spike
sequence with mT spikes is generated in the manner just described; this
dummy sequence is not included in the ensemble rate. For each neuron,
we choose vk random spikes from the dummy sequence. The fraction of
spikes chosen from the dummy train (vk/ck) is determined empirically so
that the area under the central peak of the correlogram accounts for the
magnitude of the correlation between spike counts (r)10. For r = {0.04,
0.14, 0.2, 0.21, 0.3, 0.4} as shown in Fig. 6, we use vk/ck = {0.08, 0.42, 0.48,
0.51, 0.565, 0.62}. To broaden the timescale of correlation, we perturb the
times of the spikes chosen from the dummy sequence by adding a random
offset drawn from N(0,σc). The standard deviation of this normal distrib-
ution, σc, is determined empirically to achieve desired CCG widths. For
the CCGs shown in Fig. 6, width = {2, 5, 8, 9, 20, 50} ms requires σc = {0.5,
1.7, 2.5, 2.9, 6.2, 14.8} ms. Thus the spike train from each neuron consists
of some spikes that are independent (except by virtue of their shared spike
rate function) of other neurons in the ensemble, and some spikes that are
related to a common source.

Signal detection in ensemble firing rates. To measure how accurately a
simulated neural ensemble represents a Gabor wavelet in its average rate,
we generated wavelets of width ∼ 1 cycle of modulation. To detect the pres-
ence of such a wavelet in the ensemble firing rate, we constructed an ‘enve-
lope detector’ that assumes prior knowledge of the frequency and time

z = Σ  x
1

—
2

course of the wavelet; only the phase is assumed to be unknown. Appli-
cation of the detector yields a scalar value, d, that can be used to gauge
the strength of the signal in ensemble rate when it is modulated by the
Gabor wavelet s(t) with parameters f, A, µ, and σ (Eq. 1):

(5)

where r(t) is the ensemble-average firing rate, s(t) is the Gabor wavelet
and s′(t) is the Gabor wavelet with its phase shifted by 90°. Note that
s(t) serves a dual role: it specifies the shape of the Gabor wavelet and
serves as a template for our detector. We performed ∼ 500 simulations
to estimate the distribution of d for a set of parameters (f, A, µ, and σ, see
Eq. 1) and compared the distribution to the d values obtained using the
same template but using a constant spike rate µ with no signal (for exam-
ple, A = 0). The probability of a correct detection of the wavelet is given
by the area under a receiver operator characteristic (ROC) curve con-
structed from the distributions of d under signal and no signal25. This is
simply the probability that the detector gives a larger value when the
wavelet is present than when it is absent.

Note: Supplementary information is available on the Nature Neuroscience

website.

Acknowledgments
Supported by HHMI, NIH grants RR00166 and EY11378 and the McKnight

Foundation. M.E.M. was supported by an NIH training grant (GM07108), a

Poncin grant and an ARCS fellowship. We thank C. Brody, J. Ditterich, J. Gold,

M. Leon and M. McKinley for comments and discussion.

Competing interests statement
The authors declare that they have no competing financial interests.

RECEIVED 22 JANUARY; ACCEPTED 1 MARCH 2002

1. Softky, W. R. & Koch, C. The highly irregular firing of cortical cells is
inconsistent with temporal integration of random EPSPs. J. Neurosci. 13,
334–350 (1993).

2. Shadlen, M. N. & Newsome, W. T. Noise, neural codes and cortical
organization. Curr. Opin. Neurobiol. 4, 569–579 (1994).

3. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons:
implications for connectivity, computation and information coding.
J. Neurosci. 18, 3870–3896 (1998).

4. Braitenberg, V. & Schuz, A. Anatomy of the Cortex: Statistics and Geometry
(Springer, Berlin, 1991).

5. Albright, T. D., Jessell, T. M., Kandel, E. R. & Posner, M. I. Neural science: a
century of progress and the mysteries that remain. Neuron 25 Suppl, S1–S55
(2000).

6. Shadlen, M. N. & Movshon, J. A. Synchrony unbound: a critical evaluation of
the temporal binding hypothesis. Neuron 24, 67–77 (1999).

7. Singer, W. Neuronal synchrony: a versatile code for the definition of
relations? Neuron 24, 49–65 (1999).

8. Johnson, K. O. Sensory discrimination: neural processes preceding
discrimination decision. J. Neurophysiol. 43, 1793–1815 (1980).

9. Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge
rate and its implications for psychophysical performance [published erratum
appears in Nature 1994 Sep 22;371(6495):358]. Nature 370, 140–143 (1994).

10. Bair, W., Zohary, E. & Newsome, W. T. Correlated firing in Macaque visual
area MT: time scales and relationship to behavior. J. Neurosci. 21, 1676–1697
(2001).

11. Fetz, E., Toyama, K. & Smith, W. in Cerebral Cortex (eds. Peters, A. & Jones,
E. G.) 1–47 (Plenum, New York, 1991).

12. Gawne, T. J. & Richmond, B. J. How independent are the messages carried by
adjacent inferior temporal cortical neurons? J. Neurosci. 13, 2758–2771
(1993).

13. Das, A. & Gilbert, C. D. Receptive field expansion in adult visual cortex is
linked to dynamic changes in strength of cortical connections.
J. Neurophysiol. 74, 779–792 (1995).

14. Lee, D., Port, N. L., Kruse, W. & Georgopoulos, A. P. Variability and
correlated noise in the discharge of neurons in motor and parietal areas of the
primate cortex. J. Neurosci. 18, 1161–1170 (1998).

15. Salinas, E., Hernandez, A., Zainos, A. & Romo, R. Periodicity and firing rate
as candidate neural codes for the frequency of vibrotactile stimuli. J. Neurosci.
20, 5503–5515 (2000).

d = ∫ √[r(t)s(t)]2 + [r(t)s´(t)]2 dt

t0 + 3

t0 – 3σ

σ

articles
©

20
02

 N
at

u
re

 P
u

b
lis

h
in

g
 G

ro
u

p
  

h
tt

p
:/

/n
eu

ro
sc

i.n
at

u
re

.c
o

m



16. Gerstein, G. & Mandelbrot, B. Random walk models for the spike activity of a
single neuron. Biophys. J. 4, 41–68 (1964).

17. Ricciardi, L. & Sacerdote, L. The Ornstein-Uhlenbeck process as a model for
neuronal activity. Biol. Cybern. 35, 1–9 (1979).

18. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with
balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

19. Shinomoto, S., Sakai, Y. & Funahashi, S. The Ornstein-Uhlenbeck process
does not reproduce spiking statistics of neurons in prefrontal cortex. Neural
Comput. 11, 935–951 (1999).

20. Salinas, E. & Sejnowski, T. J. Impact of correlated synaptic input on output
firing rate and variability in simple neuronal models. J. Neurosci. 20,
6193–6209 (2000).

21. Werner, G. & Mountcastle, V. B. The variability of central neural activity in a
sensory system, and its implications for the central reflection of sensory
events. J. Neurophysiol. 26, 958–977 (1963).

22. Gawne, T. J., Kjaer, T. W., Hertz, J. A. & Richmond, B. J. Adjacent visual
cortical complex cells share about 20% of their stimulus-related information.
Cerebral Cortex 6, 482–489 (1996).

23. van Kan, P. L. E., Scobey, R. P. & Gabor, A. J. Response covariance in cat visual
cortex. Exp. Brain Res. 60, 559–563 (1985).

24. Lampl, I., Reichova, I. & Ferster, D. Synchronous membrane potential
fluctuations in neurons of the cat visual cortex. Neuron 22, 361–374 (1999).

25. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley,
New York, 1966).

26. Vaadia, E. et al. Dynamics of neuronal interactions in monkey cortex in
relation to behavioural events. Nature 373, 515–518 (1995).

27. Brody, C. D. Disambiguating different covariation types. Neural Comput. 11,
1527–1535 (1999).

28. Brody, C. D. Correlations without synchrony. Neural Comput. 11, 1537–1551
(1999).

29. Oram, M. W., Wiener, M. C., Lestienne, R. & Richmond, B. J. Stochastic
nature of precisely timed spike patterns in visual system neuronal responses.
J. Neurophysiol. 81, 3021–3033 (1999).

30. Ts’o, D. Y., Gilbert, C. D. & Wiesel, T. N. Relationships between horizontal
interactions and functional architecture in cat striate cortex as revealed by
cross-correlation analysis. J. Neurosci. 6, 1160–1170 (1986).

31. Murthy, V. N. & Fetz, E. E. Effects of input synchrony on the firing rate of a
three-conductance cortical neuron model. Neural Comput. 6, 1111–1126
(1994).

32. Stevens, C. F. & Zador, A. M. Input synchrony and the irregular firing of
cortical neurons. Nat. Neurosci. 1, 210–218 (1998).

33. Usrey, W. M., Alonso, J. M. & Reid, R. C. Synaptic interactions between thalamic
inputs to simple cells in cat visual cortex. J. Neurosci. 20, 5461–5467 (2000).

34. Engel, A. K., Roelfsema, P. R., Fries, P., Brecht, M. & Singer, W. Role of the
temporal domain for response selection and perceptual binding. Cerebral
Cortex 7, 571–582 (1997).

35. Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spike synchronization and
rate modulation differentially involved in motor cortical function. Science
278, 1950–1954 (1997).

36. Di Lorenzo, P. M. & Lemon, C. H. The neural code for taste in the nucleus of
the solitary tract of the rat: effects of adaptation. Brain Res. 852, 383–397
(2000).

37. Lumer, E. D., Friston, K. J. & Rees, G. Neural correlates of perceptual rivalry
in the human brain. Science 280, 1930–1934 (1998).

38. Mountcastle, V. B., Talbot, W. H., Sakata, H. & Hyvärinen, J. Cortical
neuronal mechanisms in flutter-vibration studied in unanesthetized
monkeys. Neuronal periodicity and frequency discrimination.
J. Neurophysiol. 32, 452–484 (1969).

39. Harris, C. M. & Wolpert, D. M. Signal-dependent noise determines motor
planning. Nature 394, 780–784 (1998).

40. Bair, W. & Koch, C. Temporal precision of spike trains in extrastriate cortex.
Neural Comput. 8, 1185–1202 (1996).

41. Teich, M. C., Heneghan, C., Lowen, S. B., Ozaki, T. & Kaplan, E. Fractal
character of the neural spike train in the visual system of the cat. J. Opt. Soc.
Am. A 14, 529–546 (1997).

42. Oertel, D. The role of timing in the brain stem auditory nuclei of vertebrates.
Annu. Rev. Physiol. 61, 497–519 (1999).

43. Abbott, L. F. & Dayan, P. The effect of correlated variability on the accuracy of
a population code. Neural Comput. 11, 91–101 (1998).

44. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis
of visual motion: a comparison of neuronal and psychophysical performance.
J. Neurosci. 12, 4745–4765 (1992).

45. Salzman, C. D., Murasugi, C. M., Britten, K. H. & Newsome, W. T.
Microstimulation in visual area MT: effects on direction discrimination
performance. J. Neurosci. 12, 2331–2355 (1992).

46. Hernandez, A., Zainos, A. & Romo, R. Neuronal correlates of sensory
discrimination in the somatosensory cortex. Proc. Natl. Acad. Sci. USA 97,
6191–6196 (2000).

47. Romo, R., Hernandez, A., Zainos, A., Brody, C. D. & Lemus, L. Sensing
without touching: psychophysical performance based on cortical
microstimulation. Neuron 26, 273–278 (2000).

48. Destexhe, A. & Pare, D. Impact of network activity on the integrative
properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81,
1531–1547 (1999).

49. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical
Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press, 1992).

articles

nature neuroscience •  volume 5  no  5  •  may 2002 471

©
20

02
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m



1

Appendix

Here, we examine the representation of transient elevations in spike rate (pulses)

by ensembles of spiking neurons. We develop an exercise that complements the

representation of brief sinusoidal modulations in spike rate considered in the main text.

Like the exercise in the main text, we compare the ensemble representation of modulating

and stationary signals over a time scale that the brain might use for computations.

The signals that are compared in this exercise consist of either a single pulse of

variable duration, or a pair of pulses, each 2 ms wide, separated by a gap of variable

duration (∆t). The average spike rate is 100 spikes/s during the pulse(s) and 0 spikes/s

otherwise. These two signal types are illustrated at the top of Fig. S1.

The problem we need to consider is not whether the pulse (P) and pulse-gap-pulse

(PgP) are discriminable—they are discriminable on the basis of total spikes—but whether

the ensemble rate contains the right number of bumps. Specifically, for the ensemble

representation to be useful it should be possible to detect two modes in the ensemble

spike histogram representation of PgP and just one in the representation of P. Of course it

is hard to detect 2 modes when ∆t is small and it is hard to detect only one mode when ∆t

is large. In the present example, we consider a narrow range of ∆t from 3 to 50 ms. We

make the assumption that neural circuits must be capable of using both P and PgP signals

across this time span. In other words, we consider neural computations that would utilize

signals that change faster than ~20 Hz.

For each ∆t, we generated ensemble representations of P and PgP using the

method of random spike sequences (see Methods). The ensembles contained 500 neurons

with a CCG shape represented by the green trace in Fig. 6c (r = 0.2, width = 9 ms). Fig.
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S1 shows the ensemble representation of P and PgP for gaps ranging from 10 to 50 ms.

Four samples of the ensemble discharge are shown for each signal. We examined the

ensemble rate functions for evidence of bimodality by applying Harnad’s dip test1. To

apply the test, the ensemble rate function is interpreted as a frequency distribution of

spike times. If the test is positive (p<0.05) the representation is classified as multimodal

(red in Fig. S1). We repeated the test 100 times under each condition to estimate the

probability that the ensemble representation would contain more than one mode (values

in parentheses in Fig. S1). The dip test is ideally suited for this problem because it is

based on the null hypothesis that the unimodal distribution is uniform, like P. It does not

make any assumptions about the bin size in the frequency histograms because it works on

the cumulative distribution of spike times, each of which is represented with a precision

of 0.1 ms. Also, for present purposes it helps that the test is fairly conservative (e.g., it

fails to detect bimodality in a samples of 1000 random numbers described by an equal

mixture of two Gaussian distributions unless they are separated by at least 3σ).

The rate histograms in Fig. S1 are colored red if they contain more than one mode

(p<.05). Ideally, all signals on the left side should be red whereas those on the right

should be black. When no smoothing of the rate function was performed (Fig. S1a),

almost all representations of PgP with ∆t>3 ms gave ensemble responses which were

appropriately classified as multimodal. However, the representation of the longer P also

contains several erroneous peaks which arise because of the weak correlation between

neurons in the ensemble. The P lasting 54 ms (i.e., ∆t = 50) was misclassified in 78% of

the samples, and >90% of pulses lasting 75-100 ms contained at least two distinct modes.

This is not acceptable because any brain mechanism that would care about detecting 2
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events over short epochs could not afford to be fooled by the existence of similar events

in a 50 ms time span. The problem is easily remedied.

A simple means for attenuating the erroneous peaks in the ensemble response is to

blur the rate signal. To achieve this in our simulations, we replace each spike that occurs

at ti with one that occurs at ti+ξ, where ξ is a random number drawn from an exponential

distribution with mean τ. The process is equivalent to smoothing the rate function by a

filter with time constant τ. After smoothing with τ = 10 ms, the longer pulse is almost

always classified as unimodal (Fig. S1b). However, this smoothing leads to a higher

probability that PgP will be misclassified as unimodal when ∆t is short. Accordingly, the

neural ensemble can now represent signals lasting at least 50 ms but it can no longer

represent changes occurring in less than 10 ms. Thus we have achieved accurate

representation at long time scales at the cost of accurately representing brief changes. We

obtained similar results using ensemble sizes of 100, 200 and 500 neurons and using a

narrower CCG width. For the narrowest case (2 ms half width, identical to that used in

Figs. 1-5 of the main text) the erroneous modes are narrower and more abundant for

∆t=50 ms. Nevertheless, smoothing with a time constant of 10 ms permits accurate

representation of the longer pulses.

This illustration complements the exercise with brief sinusoidal modulations

pursued in the main text. In both cases, fluctuations in ensemble spike rate resulting from

the weak coupling between neurons masquerade as fast changes in spike rate. In the

exercise using sinusoidal wavelets, we found that modulations occurring faster than ~100

Hz would not be distinguishable from the fluctuations accompanying a constant spike

rate. In the present example, we smoothed away these noise fluctuations at the cost of
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representing brief signals separated by 10 ms or less. We may conclude from this

exercise that the brain would do best to ignore rate fluctuations on this time scale.

Importantly, neither exercise  implies any limitation on temporal comparisons or on the

precision in estimating the time of a signal. For example, the center of a blurred pulse can

be estimated with arbitrary precision. Both exercises expose a limit on the ability to

encode fluctuations in variables that are represented by ensembles of neurons: any signal

that would be lost upon averaging over an epoch of ~10 ms will fail to be represented or

transmitted by the cortex.

1. Hartigan, J. A. & Hartigan, P. M. The dip test of unimodality. The Annals of

Statistics 13, 70-84 (1985).
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Fig. S1. Simulated ensemble representation of pulse-gap-pulse and single-pulse signals.  
Numbers in the center column indicate the gap duration. The single pulse signals have 
matching duration to gap plus surrounding 2 ms pulses. Ensemble spike histograms were 
generated using 500 weakly correlated neurons using the method of random spike sequences 
(r = 0.2; CCG width = 9 ms). Numbers in parentheses indicate the probability that the distribution 
of ensemble spike times contains two or more modes (Harnad’s dip test, p<0.05). Histogram 
binwidth is 1 ms. a, Raw responses. Four examples are shown for the two signal types at each 
value of gt. Those with two distinct modes are colored red. Notice that many responses on the 
right side exhibit more than one mode. b, Smoothed responses. Smoothing is achieved by delaying 
each spike by a random time drawn from an exponential distribution (t = 10 ms). This degree of 
smoothing attenuates the fluctuations in the ensemble representation of longer pulses at the 
expense of the shortest pulse-gap-pulse.


