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Both the speed and the accuracy of a perceptual judgment depend on the strength of the sensory stimulation. When 
stimulus strength is high, accuracy is high and response time is fast; when stimulus strength is low, accuracy is low and 
response time is slow. Although the psychometric function is well established as a tool for analyzing the relationship 
between accuracy and stimulus strength, the corresponding chronometric function for the relationship between response 
time and stimulus strength has not received as much consideration. In this article, we describe a theory of perceptual 
decision making based on a diffusion model. In it, a decision is based on the additive accumulation of sensory evidence 
over time to a bound. Combined with simple scaling assumptions, the proportional-rate and power-rate diffusion models 
predict simple analytic expressions for both the chronometric and psychometric functions. In a series of psychophysical 
experiments, we show that this theory accounts for response time and accuracy as a function of both stimulus strength 
and speed-accuracy instructions. In particular, the results demonstrate a close coupling between response time and 
accuracy. The theory is also shown to subsume the predictions of Piéron’s Law, a power function dependence of 
response time on stimulus strength. The theory’s analytic chronometric function allows one to extend theories of accuracy 
to response time. 
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Introduction 
Both response time and accuracy depend on the diffi-

culty of a perceptual judgment. Increasing the stimulus 
strength or difference between stimuli decreases response 
time and increases accuracy. Measurements of accuracy as a 
function of the stimulus strength are known as psychomet-
ric functions and are central to the study of psychophysics 
(e.g., Klein, 2001). Measurements of response time as a 
function of stimulus strength are sometimes known as 
chronometric functions (e.g., Link, 1992). The goal of this 
study is to understand how these measurements are related 
to one another. We measure both functions and test the 
predictions of a low parameter version of the diffusion 
model (e.g., Ratcliff, 1978; Ratcliff & Smith, 2004). This 
theory predicts a close coupling between the effect of stimu-
lus strength on response time and its effect on accuracy. 

Theories of accuracy 
A theory of how stimulus strength affects response time 

and accuracy requires assumptions about the encoding of 
the stimulus and how this internal representation is used in 
decision making. In short, it needs assumptions about scal-
ing and decision. To set the stage, consider theories of scal-

ing and decision intended for accuracy experiments. The 
modern starting point is signal detection theory (Green & 
Swets, 1966; Macmillan & Creelman, 2005). In this theory, 
the stimulus is represented by a random variable and the 
decision is made by comparing a sample from this random 
variable to a criterion. The theory allows one to distinguish 
between sensitivity manipulations that affect the stimulus 
representation and bias manipulations that affect the deci-
sion criterion. Sensitivity is summarized by the d! measure, 
which is the difference between noisy representations nor-
malized by their standard deviations. 

Psychometric functions 
To relate a particular stimulus to sensitivity, one must 

assume something about the scaling of the stimulus into 
the internal representation. Assuming a simple propor-
tional scale, d! is linear with stimulus strength and the 
shape of the psychometric function follows from the distri-
bution of the noisy representation (Tanner & Swets, 1954). 
The common assumption of Gaussian noise results in a 
psychometric function that is a cumulative Gaussian. This 
proportional scaling can be generalized by allowing d! to be 
a power function of stimulus strength (Nachmias & Ko-
cher, 1970; Pelli, 1987). For example, contrast discrimina-
tion of simple disks can be described by a proportional 
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scale, whereas contrast detection requires a power function 
scale (Laming, 1986; Leshowitz, Taub, & Raab, 1968). In 
short, the form of the psychometric function depends on 
assumptions about both the scaling and decision.  

Theories of response time 
The starting point for modern theories of response 

time is sequential sampling theory (Stone 1960; Wald, 
1947; for a review, see Luce, 1986). The internal represen-
tation of the relevant stimulus is assumed to be noisy and 
to vary over time. Each decision is based on repeated sam-
pling of this representation and comparing some function 
of these samples to a criterion. For example, suppose sam-
ples of the noisy signal are taken at discrete times and are 
added together to represent the evidence accumulated over 
time. This accumulated evidence is compared to an upper 
and lower bound. Upon reaching one of these bounds, the 
appropriate response is initiated. If such a random walk 
model is modified by reducing the time steps and evidence 
increments to infinitesimals, then the model in continuous 
time is called a diffusion model (Ratcliff, 1978; Smith, 1990). 
For this model, the accumulated evidence has a Gaussian 
distribution, which makes it a natural generalization of the 
Gaussian version of signal detection theory (Ratcliff, 1980). 
A wider range of sequential sampling models are consid-
ered in the Discussion (e.g., Maloney & Wandell, 1984; 
Usher & McClelland, 2001).  

Chronometric functions 
Perhaps the most comprehensive analysis of chrono-

metric functions was provided by Link (1992; Link & 
Heath, 1975; Smith, 1994). Link and colleagues focused on 
a very general version of sequential sampling theory called 
relative judgment theory coupled with a very general scaling 
assumption. This theory predicts a constraint on the rela-
tion between response time and accuracy (the “RT versus 
Z” relation). Such a constraint is also the center of the more 
specific models that are pursued in this article. 

An alternative approach was taken by Ratcliff and col-
leagues, who investigated a diffusion model with parameter 
variability (e.g., Ratcliff, 1978; Ratcliff & Rouder, 1998). 
These studies focused on using this generalization of the 
diffusion model to account for differences between correct 
and error response times in a wide range of perceptual and 
memory tasks. Most relevant here, a few of their studies 
restricted how the parameters of the model depend on 
stimulus strength in perceptual discrimination. For exam-
ple, Smith, Ratcliff, and Wolfgang (2004) used a three pa-
rameter Naka-Rushton function to describe the internal 
response to contrast.  

While there are only a few theoretical studies of the ef-
fect of stimulus strength on response time, there are many 
empirical measurements. An early example of a chrono-
metric function was described by Kellogg (1931). Many of 
the early measurements were performed under conditions 
with few errors (e.g., less than 5%). Under such conditions, 

response time is well described by a power function of 
stimulus strength with an additive constant (Piéron’s Law; 
for review, see Bonnet & Dresp, 2001; Luce, 1986). Com-
parisons with Piéron’s Law are considered in Experiment 3. 

To sum up, prior approaches have pursued general ver-
sions of the diffusion model with general scaling assump-
tions. There is little or no prior work on the combination 
of the simplest diffusion model with the simplest scaling 
assumption. 

An example experiment 
To make this discussion of theory more concrete, we 

next introduce an example discrimination task that is used 
through much of this article. It is a left-right direction-of-
motion discrimination task previously studied in humans 
(e.g., Morgan & Ward, 1980; Watamaniuk & Sekuler, 
1992) and nonhuman primates (e.g., Newsome, Britten, 
Movshon, & Shadlen, 1989; Roitman & Shadlen, 2002). 
In Roitman and Shadlen (2002), rhesus monkeys were 
trained to view a dynamic random dot kinetogram and to 
decide the net direction of motion, indicating their deci-
sion by making a saccadic eye movement to a correspond-
ing choice target (Figure 1A). On each trial, some propor-
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Figure 1. Direction-discrimination task and random dot motion
stimulus. A. Left-right, direction-of-motion discrimination task. On
each trial, the observer fixates a central fixation point and then
targets appear to the left and right. After an exponentially distrib-
uted random foreperiod, the random dot motion stimulus is pre-
sented. Observers view the stimulus until they make a response,
indicating their judgment about the direction of motion by making
a saccade to one of the targets. B. Example of a random-dot
motion stimulus of variable motion coherence. Stimulus strength
is varied by changing the proportion of dots moving coherently in
a single direction. 
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Figure 2. Motion strength affects response times and accuracy.
The top panel shows the mean response time for correct re-
sponses on a log scale, and the bottom panel shows the propor-
tion of correct responses. Both graphs are a function of motion
strength on a log scale. Error bars represent 1 SE in all figures.
Smooth curves depict the predicted functions from the best-fitting
proportional-rate diffusion model. Data are from Roitman and
Shadlen (2002). 

tion of the dots moved coherently in one of two possible 
directions while the others were randomly repositioned. 
The monkey viewed the random dot display as long as re-
quired to make a decision. The display was terminated at 
the beginning of the eye movement response. From trial to 
trial, stimulus strength was varied by changing the propor-
tion of coherently moving dots (Figure 1B). In this way, 
both the proportion of correct responses and mean re-
sponse time were measured as a function of stimulus 
strength. 

As shown in Figure 2, both response time and accuracy 
varied with motion strength. Response times decreased 
from a highest value at zero motion strength toward a lower 
asymptote at the highest motion strengths. Accuracy in-
creased from chance at zero motion strength to perfect at 
the highest motion strengths. The smooth curves in 
Figure 2 show the joint predictions of a diffusion model 
with proportional scaling assumptions. This model ac-
counts for the effect of motion strength on both response 
time and accuracy. It is next described in detail.  

Proportional-rate diffusion model 

Definition  
We now introduce what we think is the simplest ver-

sion of the diffusion model coupled with the simplest scal-
ing assumptions. It is a special case of both relative judg-
ment theory (Link, 1992) and the diffusion model with 
parameter variability (Ratcliff, 1978). Formal definitions 
and predictions are presented in the Appendix. Consider a 
discrimination between stimuli Sa and Sb, where one is re-
quired to make a corresponding response Ra or Rb. In the 
diffusion model, evidence is accumulated over time until 
an upper or lower bound is reached (A or –B), which trig-
gers a response. A single trial is illustrated in Figure 3. It 
shows the relative evidence for stimulus Sa over stimulus Sb 
as a function of time. A sample path from a single trial is 
shown by the jagged contour. For this example trial, the 
accumulated evidence reaches the upper bound A and trig-
gers the Ra response. The ray from the origin illustrates the 
mean drift rate ". Ignoring the bounds, the path at time t 
would have a mean of "t and a variance of #2t. The # pa-
rameter is usually known as the diffusion coefficient. Weak 
stimuli have values of " near zero and strong stimuli have 
large values. Bias toward one or the other response can be 
represented by the relative values of the bounds A and B. If 
there is no response bias, then B = A. In addition, the 
bound controls the speed-accuracy tradeoff. Large values of 
the bound slow the response and improve accuracy. In 
summary thus far, the model has parameters for the 
bounds (A and B), the drift rate "$ and the diffusion coeffi-
cient #. 
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Figure 3. An illustration of a sample path of the accumulation of
evidence underlying a perceptual decision. On each trial, evi-
dence in favor of one alternative over another is accumulated as
a function of time. For any particular stimulus strength, there is
an accumulation of noisy evidence parameterized by the mean
rate of accumulation. A decision is made when the process
reaches one of the bounds. 

Without further elaboration, the diffusion model has 
four parameters for each stimulus strength condition. We 
restrict it in several ways to develop a theory specific to the 
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effect of stimulus strength. First, the drift rate is assumed to 
be the only parameter affected by stimulus strength. Sec-
ond, no response bias is assumed, thus A = B. Third, the 
noise defined by the diffusion coefficient # is assumed to 
be constant for all conditions. 

To model response time, two further refinements are 
necessary to the diffusion process. First, the diffusion proc-
ess is a model of decision time and not other sensory and 
motor latencies. The common approach is to consider deci-
sion time and the other residual times as additive inde-
pendent contributions to the response time (Donders, 
1969; Luce 1986). Thus, the mean response time tT is sim-
ply the sum of the mean decision time tD and the mean 
residual time tR. Second, the bound A, drift rate ", and dif-
fusion coefficient # all share relative evidence units. More-
over, they combine in the predictions as ratios. This allows 
one to normalize the bound and drift parameters by the 
noise denoted by the diffusion coefficient # (see Appendix 
for details). The normalization reduces the number of pa-
rameters and makes explicit the role of signal-to-noise ratio 
in the model. Thus, the parameters become the normalized 
drift rate "!, the normalized bound A!, and the mean resid-
ual time tR.  

To address stimulus scaling, one must assume some-
thing about the relation between stimulus strength and the 
drift rate. For the most specific model, we assume the nor-
malized drift rate is proportional to stimulus strength  
x:"! = kx. The coefficient k is the measure of sensitivity in 
this proportional-rate diffusion model. We also consider a more 
general power function of stimulus strength in the power-
rate diffusion model. In this generalization, the normalized 
drift rate is given by "! = sign(x)%kx%&. (The sign function 
is defined as –1 if x < 0 and 1 if x > 0.) In summary, the 
parameters are the normalized bound A!, sensitivity k, 
mean residual time tR, and optionally a scaling exponent &. 

Predictions 
The proportional-rate diffusion model predicts that the 

psychometric function for accuracy PC(x) is a logistic func-
tion of stimulus strength x:  

  
PC (x) ' 1

1( e
)2 !A k x

.  (1) 

This logistic function is fit to the monkey accuracy data in 
the bottom panel of Figure 2. The predicted chronometric 
function for the mean response time is 

  
tT (x) ' !A

kx
tanh( !A kx)( tR . (2) 

Stimulus strength enters the function as both a 1/x term 
and as an argument for the hyperbolic tangent function. 
This function is fit to the monkey response times in the top 
panel of Figure 2. In fact, the fits shown are made simulta-
neously to response time and accuracy as described in 
Methods.  

The coupling of response time and accuracy  
One can use these functions to understand how the 

diffusion model predicts a coupled effect on response time 
and accuracy. In Figure 4, response time is a function of 
stimulus strength in the top panel, and proportion correct 
is a function of stimulus strength in the bottom panel as 
done with Figure 2. An example joint prediction is shown 
by the two curves. For accuracy, the predicted psychometric 
function spans the range of proportion correct from .5 to 
1.0 and has only a single degree of freedom: a horizontal 
displacement on the logarithmic stimulus strength axis. 
The horizontal position can be summarized by the accuracy 
threshold halfway between chance and perfect. This halfway 
accuracy threshold depends on the bound and the sensitivity 
and is approximately equal to 0.55/(kA!). A derivation of 
this expression is provided in the Appendix. For response 
time, the chronometric function spans the range from a 
lowest value to a highest value. The lowest value is given by 
the mean residual time tR and the highest value is given by 
A!2+ tR. Within that range, the function has only one de-
gree of freedom, a horizontal displacement. As with the 
psychometric function, the horizontal position of the func-
tion can be specified by a time threshold that is halfway 
between the extreme values. The halfway time threshold is 
approximately equal to 1.92/(kA!) and is also derived in the 
Appendix. In summary, for both functions the horizontal 
position is controlled by the same parameter kA!. Thus, the 
two functions must shift in unison. 
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Figure 4. An illustration of the relation between the chronometric
and psychometric function. On a log-scaled stimulus strength
axis, both functions have a fixed shape between upper and lower
asymptotes. The sensitivity parameter shifts both functions hori-
zontally in unison. 
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Although the use of the halfway criterion in the thresh-
old definitions is arbitrary, the relative horizontal position 
of the psychometric and chronometric functions is not. For 
all parameter values, the two functions have a fixed offset 
from one another. For example, when predicted accuracy is 
at 75% correct, the predicted response time is 91% of the 
range from the lowest to the highest value. We summarize 
the predicted relative position of the two functions with  
the threshold ratio: halfway-time-threshold/halfway-accuracy-
threshold.  

The threshold ratio allows a specific test of the cou-
pling between the chronometric and psychometric func-
tions. The proportional-rate diffusion model predicts a 
threshold ratio of approximately 3.5, while other models 
predict other ratios. In the analysis of each experiment, we 
estimate the threshold ratio by uncoupling the sensitivity 
parameters for response time and accuracy (for more de-
tails, see Appendix ). If the observed threshold ratio is near 
3.5, then it is consistent with the proportional-rate diffu-
sion model; if the threshold ratio differs from 3.5, it is evi-
dence against the proportional-rate diffusion model. 

One can gain further intuitions about the predictions 
by examining how changing each parameter shifts the func-
tions. Such shifts are shown separately for the three pa-
rameters in Figure 5. The left panels show the effect of the 
normalized bound A!. Increasing the bound increases the 
highest value of the chronometric function without chang-
ing the lowest value. It also shifts both functions to the left. 
Note this is not obvious for the chronometric function be-

cause of the simultaneous vertical scaling. Look for a com-
mon landmark on both functions: The halfway time 
threshold shifts in unison with the accuracy threshold. This 
is the effect of the speed-accuracy tradeoff: longer times 
yield higher accuracy. The middle panels show the effect of 
the sensitivity parameter k. Increasing k shifts both func-
tions to the left. This is the effect of a pure sensitivity ma-
nipulation. The right panels show the effect of changing 
the mean residual time tR. Increasing the mean residual 
time shifts the chronometric function upward. On a linear 
response time graph, this is a simple displacement. The 
apparent shape change is due to the use of a logarithmic 
response time axis in this graph. The logarithmic scaling is 
used to simultaneously display effects at 300 and 2000 ms 
(e.g., Figure 7) and to make the standard errors more ho-
mogenous. The mean residual time has no effect on the 
psychometric function.  

To summarize this analysis, the predicted chronometric 
and psychometric functions have simple analytic expres-
sions. The expression for the chronometric function is 
nearly as simple as that of the more commonly studied psy-
chometric function. Together, they depend on just three 
(or four) parameters and stimulus strength is assumed to 
affect only one parameter. This model predicts a close cou-
pling between response time and accuracy. The relationship 
is summarized by the threshold ratio, which we use as our 
primary test of the coupling between response time and 
accuracy. In the following five experiments, chronometric 
and psychometric functions are measured under a variety of 
conditions.  
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Figure 5. How parameters affect the chronometric and psychometric functions. A. Chronometric and psychometric functions for three
values of the normalized bound A!. Increasing the bound increases the highest value of the chronometric function and decreases the
halfway threshold for both functions. B. Chronometric and psychometric functions for three values of sensitivity k. Increasing sensitivity
decreases the halfway threshold for both functions.  C. Chronometric and psychometric functions for three values of the mean residual
time tR. Increasing mean residual time displaces the chronometric function upward. 
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General methods 

Overview 
The primary task used in this article has already been 

introduced with Figure 1. Human observers fixated the 
center of a display and were presented with a field of ran-
domly moving dots. The motion of the dots was manipu-
lated to have net coherent motion to either the left or the 
right. Observers judged the net direction of the motion and 
made a corresponding eye movement to a target to the left 
or right of fixation. Motion strength was varied and both 
probability correct and response time were measured as a 
function of motion strength. 

Observers  
Observers were young adults with normal or corrected-

to-normal acuity. They were either volunteers from within 
the laboratory or were paid $15 per hour. Two of the au-
thors (AH and JP) participated in some of the experiments. 
All had previous experience with psychophysical tasks.  

Apparatus 

Video display 
The stimuli were displayed on a flat-screen CRT video 

monitor (19-in View Sonic PF790) controlled by a Macin-
tosh G4 (533 MHz, Mac OS 9.1) with an ATI Rage 128 Pro 
graphics card (832 by 624 pixels, viewing distance = 60 cm, 
subtending 32° by 24° with 25.5 pixel/deg at screen center; 
refresh rate = 74.5 Hz). The monitor was adjusted to have a 
white with a CIE 1931 x, y chromaticity .31, .32, peak lu-
minance of 110 cd/m2, and a black level of 3.6 cd/m2, of 

which 3.4 cd/m2 was due to room illumination. In the first 
experiment, the first two observers (the authors) were in a 
dimly lit room with a resulting black-level luminance of  
1.2 cd/m2. For the remaining observers and for all other 
experiments, we switched to stronger room lights to reduce 
pupil size. This improved eye tracking on some observers. 
In all experiments, we presented white moving dots on a 
black background, and red or blue fixation and response 
targets (red: 27 cd/m2, CIE 1931 x, y chromaticity .63, .34; 
blue: 9 cd/m2, x, y chromaticity .15, .07). Stimuli were gen-
erated using the Psychophysics Toolbox Version 2.44 
(Brainard, 1997; Pelli, 1997) for MATLAB (Version 5.2.1, 
Mathworks, MA). Observers were seated in an adjustable 
height chair in front of the display. Chin and forehead rests 
were adjusted so that each observer’s eyes were level with 
the middle of the monitor. 

Eye movement monitor 
Eye movements were recorded using a noninvasive 

video system (EyeLink Version 2.04, SensoMotoric Instru-
ments, Boston, MA) controlled by a separate computer 
(566-MHz Intel Pentium, running DOS version 7.0 in-
stalled from Windows 95). The EyeLink is a binocular, 
head-mounted, infrared video system with 250-Hz sam-
pling. It was controlled by the EyeLink Toolbox extensions 
of MATLAB Version 1.2 (Cornelissen, Peters, & Palmer, 
2002). We recorded and analyzed only the right eye posi-
tion. As summarized in Table 1, the system has a resolution 
of 1° or better. For Experiment 1 with the largest sample  
of observers, the standard deviation of fixation was  
0.71 ± 0.06° horizontal and 1.71 ± 0.22° vertical; after sub-
tracting the variation in fixation, the standard deviation of 
the saccade endpoints to one of the targets was 0.31 ± 0.04° 
horizontal and 0.35 ± 0.03° vertical.  

 

 
Exp.   Fixation SD Target SD  

  Horizontal Vertical Horizontal Vertical  
1 AH 0.72 1.83 0.24 0.45 4 
1 EH 0.96 2.19 0.21 0.36 3 
1 JD 0.56 1.86 0.25 0.33 2 
1 JP 0.67 2.15 0.34 0.25 4 
1 MM 0.70 1.47 0.34 0.43 2 
1 MK 0.63 0.75 0.48 0.31 1 
2 JP 0.41 1.34 0.29 0.23 1 
2 AH 0.61 1.56 0.22 0.48 3 
3 JP 0.29 1.15 0.32 0.26 2 
3 MK 0.55 0.95 0.43 0.32 0 

4 Eye EH 0.53 2.29 0.25 0.40 1 
4 Finger EH 0.40 0.97 n/a n/a 0 

4 Eye JP 0.39 0.91 0.31 0.24 2 
4 Finger JP 0.50 0.94 n/a n/a 2 
5 Disc. JP 0.32 0.92 0.23 0.25 2 
5 Disc. MK 0.60 1.18 0.19 0.28 1 
5 Det. JP 0.33 1.65 0.23 0.21 2 
5 Det. MK 0.75 0.83 0.19 0.25 3 
Mean  0.55 1.39 0.28 0.32 2 

Table 1. Gaze precision and percentage rejected trials for all experiments. SD = standard deviation, Disc. = discrimination, and Det. =

detection. 

Observer % Rejected Trials
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Stimuli 
The motion display was a sequence of random dots 

that appeared within a 5° diameter circular aperture cen-
tered about fixation. Dots were 3 by 3 pixels (0.1° square), 
with a density of 16.7 dots/deg2/s. On each trial, the direc-
tion of motion was randomly either left or right, and the 
strength of motion was selected randomly from a list of 
possible coherence values. The coherence specifies the 
probability that a dot is displaced in motion or randomly 
repositioned. On each video frame, a coherently moving 
dot was shifted 0.2° from its position 40 ms earlier (3 video 
frames), corresponding to a speed of 5°/s. A dot that was 
not moving coherently was plotted in a random position. 
We refer to the proportion of coherently moving dots as 
the motion coherence. Because the coherent and non-
coherent dots are selected independently on each frame, 
this procedure effectively yields three interlaced sequences 
with limited lifetime dots. Similar random dot stimuli have 
been used in previous psychophysical and physiological 
studies because they control motion strength without pro-
viding positional cues (e.g., Newsome et al., 1989; Shadlen 
& Newsome, 2001). 

Procedure 
Each trial consisted of the following sequence of events 

(Figure 1A): 
(a) Fixation. A red fixation disk (0.4° diameter) was 

presented in the center of the screen. Once 
it appeared, observers were required to ac-
quire and maintain fixation within a 5° ra-
dius for 0.35 s, and then within 2° of their 
initial fixation for another 0.15 s. 

(b) Targets. Once fixation was attained, two red target 
disks of 0.8° diameter were presented 10° to 
the left and right of fixation for a minimum 
of 0.2 s. This target display was maintained 
for an additional warning interval drawn 
from an exponential distribution with a 
mean of 0.7 s, truncated to a maximum of 
4.8 s. Thus, the time from the onset of the 
targets to the onset of the motion display 
had a mean of 0.9 s and a maximum of 
5.0 s. Observers had to maintain fixation 
within 2° of their observed fixation. 

(c) Motion display. After the targets were displayed 
and the waiting period was over, the fixation 
disk changed from red to blue and the ran-
dom dot motion display was presented until 
the observer moved his/her gaze outside of a 
5° radius window. The motion display was 
terminated immediately after fixation was 
broken. After another 0.1 s, gaze position 
was compared to the position of the targets 

to determine if the eye movement corre-
sponded to a correct response, an error, or 
an anomalous response. If gaze did not fall 
within a 3° radius of one of the targets, the 
trial was classified as a no choice. If the gaze 
was within 3° of one of the targets, and re-
mained near the target for another 0.2 s, the 
trial was classified as either correct or error, 
depending on the gaze position. If gaze did 
not remain near the targets for this 0.2-s pe-
riod, the trial was also classified as a no 
choice. Both the fixation and targets were 
erased immediately after online response 
classification. 

(d) Feedback. Tone feedback was presented after the 
response or 1.0 s after the onset of the mo-
tion display, whichever came later. The 
tones and duration of the feedback varied 
depending on whether the response was cor-
rect (single tone, 0.5 s), an error (double 
tone, 1.0 s), or a broken fixation or other 
anomalous response (five tones, 2.0 s).  

(e) Intertrial interval. After the feedback period, the 
screen remained blank for an intertrial in-
terval of 1.0 s before the fixation point was 
presented to begin the next trial. 

Trials were presented in short blocks whose length var-
ied with experiment. Motion strength and direction were 
counterbalanced within blocks. At the end of each block, 
observers were given three pieces of cumulative feedback: 
percentage correct, response time in the most difficult con-
dition, and a summary of their performance in terms of the 
number of correct responses per minute. At the end of the 
experiment, the same feedback was given for the entire ses-
sion. Several sessions of practice were conducted before 
beginning the reported experiments.  

In our initial pilot studies, observers appeared to adopt 
a variety of strategies with respect to the speed of response. 
Some slowed down more than others to gain additional 
accuracy in the difficult conditions. To promote a common 
strategy across observers, we gave the following instructions: 
"Please respond as quickly as possible given a high level of 
accuracy. For difficult displays, you may take some time to 
improve your judgment. For this experiment, we will give 
you a target mean response time for the most difficult dis-
plays of about 800 ms." One exception was in the first ex-
periment where JP and AH received no explicit instruction 
regarding speed. 

Gaze position analyses 
The analysis of gaze position had two parts: real-time 

analyses performed during the experiment, and off-line 
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analyses run on completed data sets. During each experi-
ment, real-time analyses were used to terminate the stimu-
lus when a response was made, to give appropriate feed-
back, and to abort trials with anomalous eye movements. 
After each experiment, a further off-line analysis was per-
formed. 

Real-time analysis 
At the beginning of a session, three calibration se-

quences were conducted. They required the fixation of 
nine positions that spanned the display. Based on this cali-
bration information, gaze position was calculated using the 
EyeLink’s nonlinear mapping function (Stampe, 1993). 
During each trial, the fixation position was estimated from 
the beginning of the fixation display until 0.2 s after the 
response. Saccades and blinks were detected using the algo-
rithms supplied with the EyeLink. Saccades were detected 
when jointly satisfying position (0.1°), velocity (30 °/s), and 
acceleration criteria (8000°/s/s). Blinks were detected when 
the image of the pupil was lost for more than 12 ms. Eye 
position was sampled every 4 ms by the EyeLink. To reduce 
noise, the Eyelink’s digital filter was used with a time pa-
rameter of 1 sample (Stampe, 1993). 

During the fixation and target displays, a trial was 
aborted if gaze position varied from the fixation point. This 
test was based on a circular window centered on the fixa-
tion position that was observed 0.35 s (averaged over  
5 samples, 0.02 s) after gaze first moved within 5° radius of 
the fixation point. Subsequent gaze position had to remain 
within a 2° radius of the initial fixation gaze position. In 
addition, we made a coarse 5° radius test of fixation based 
on the initial calibration. 

Off-line analysis 
After the experiment, further analysis was performed 

on the sampled gaze position and the saccade events identi-
fied by the real-time analysis. For each trial, the offline 
analysis calculated the mean of the gaze position observed 
during fixation for the 0.1 s prior to the motion display, 
and used it to translate the gaze position relative to the cal-
culated fixation. 

Using the off-line position estimates and the real-time 
saccade and blink events, trials were classified into one of 
the following: 

(a) Bad fixation. Fixation at the beginning of the trial 
remained outside of a 5° radius circular 
window. 

(b) Blink. A blink was detected sometime from 0.1 s 
before the motion display to the termination 
of the display. If a blink was detected before 
the motion display, the trial was immedi-
ately aborted. 

(c) Anticipation. The gaze shifted to within 3° of one 
of the target locations before the beginning 
of the motion display. 

(d) Broken fixation. Gaze position deviated by more 
than 3° from the initial fixation before the 
stimulus presentation. 

(e) No choice. Gaze shifted outside of a 3° fixation 
window but not within 3° of either the left 
or right target after the onset of the motion 
display. 

(f) Error. Gaze shifted to within 3° of the incorrect 
target after the onset of the motion display 
within 0.1 s of leaving the fixation window. 

(g) Correct. Gaze shifted to within 3° of the correct 
target after the onset of the motion display 
within 0.1 s of leaving the fixation window. 

Classification was done in the above order (a-g). Thus, 
a trial was classified as correct (g) only if it did not fit any of 
the criteria for the other classifications (a-f). For example, 
on a given trial, if an observer first made an anticipatory 
response and then the correct response, the trial was classi-
fied as an anticipation. In the analyses in this article, only 
correct and error trials were considered. All other anoma-
lous trials were excluded from further analysis. We re-
corded and monitored the percentage of such trials to ver-
ify that these anomalous trials were rare. For Experiment 1 
with the largest sample of observers, there were 2.7 ± 0.5% 
anomalous trials (± indicates a standard error throughout 
this article). Across all experiments, only 2% of trials were 
anomalous (Table 1). 

Data analysis 

Model fits 
We fitted functions of stimulus strength to the mean 

response time and accuracy data using a maximum likeli-
hood procedure. For each data set, the free parameters were 
iteratively adjusted to maximize the summed log likelihood 
of the predicted mean response time and accuracy. Likeli-
hood is the probability of observing the data given the pre-
diction. For response time, the relevant distribution is the 
sampling distribution of the mean, rather than the sample 
distribution for individual trials. The sampling distribution 
of the mean has a Gaussian distribution for asymptotically 
large samples. It can be described by the predicted mean 
response time tT(x) and predicted standard error of the 
mean VAR[ ( )]t TT x n# ' , where VAR is the predicted 
variance (see Appendix) and n is the number of trials. 
Given this Gaussian approximation, the likelihood LT of 
the observed mean response time ( )Tt x  given the predicted 
mean response times tT(x) is 

* +222[ ( ) ( )]1( ) .
2

t
T

t

T Tt x t x
L x e

#

# ,

) )
'  (3) 
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For accuracy, we assume the probability of observing r cor-
rect choices out of n trials obeys the binomial distribution. 
Thus, the likelihood LP of the observed proportions of cor-
rect responses r/n given the predicted proportion correct Pc 
is 
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Figure 6. Experiment 1: Response time and accuracy as a function of motion strength. For six observers, each pair of panels shows
mean response time for correct responses and proportion of correct responses as a function of motion strength on a log scale. Smooth
curves depict the predicted functions from the best-fitting proportional-rate diffusion model. 
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The log likelihoods were summed over stimulus strength 
conditions to produce a combined log likelihood of 

ln( ) ln[ ( )] ln[ ( )]T PxL L x L' (/ , (5) 

which was maximized by iteratively adjusting the model 
parameters.  

Hypothesis testing 
For most analyses, we used the likelihood ratio test to 

ascertain whether adding parameters to the model signifi-
cantly improved the fit. Let H0 denote a restricted model 
and let H1 denote a more general model with additional 
parameters. The statistic  

* +* + * +*12 ln | ln |L x H L x H0 )1  (6) 

is distributed as 22 with degrees of freedom equal to the 
difference in the number of free parameters between the 
two nested models (Hoel, Port, & Stone, 1971). 

Experiment 1: Stimulus strength 
Response time and accuracy were measured for a range 

of motion strengths in the direction-of-motion discrimina-
tion task. The results were fit to the predictions of the pro-
portional-rate diffusion model and its generalizations. 

Methods 
Six observers, including the authors JP and AH, per-

formed the motion discrimination task. On each trial, mo-
tion coherence was selected randomly from 0, 3.2, 6.4, 
12.8, 25.6, and 51.2%.  

Results and discussion 
Both response time and accuracy depended on motion 

strength. For six observers, Figure 6 shows the mean correct 
response time as a function of motion strength in the up-
per panels and accuracy as a function of motion strength in 
the lower panels. Data are shown as points with error bars 
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Observer A! k tR ln(L) 
AH 0.86 25 0.320 4.7 
EH 0.80 9 0.298 3.5 
JD 0.60 28 0.334 6.2 
JP 0.71 23 0.351 10.7 
MK 0.64 27 0.359 8.8 
MM 0.63 13 0.419 8.0 

Mean 0.71 ± 0.04 21 ± 3 0.347 ± 0.017  

Table 2. Experiment 1: Parameter values for proportional-rate 
diffusion model. L = likelihood; tR in seconds. 

representing 1 SEM for response times, and 1 SE of the 
proportion for accuracy. As motion strength increased, re-
sponse time decreased and accuracy increased. Accuracy 
became nearly perfect for motion coherences greater than 
25%, while response times continued to decline. 

The fit of the proportional-rate diffusion model is 
shown by the smooth functions of motion strength in 
Figure 6. The 11 data points were well described by the 
three-parameter model. The values of the parameters and 
the log likelihood of the fit are given in Table 2. Over the 
six observers, the mean sensitivity was 20 ± 3, the mean 
normalized bound was 0.71 ± 0.04, and the mean residual 
time was 347 ± 17 ms.  

To evaluate this model, we considered the uncoupled 
model in which the response time and accuracy functions 
are free to have their own sensitivity parameters and thus 
allow the threshold ratio to take on any value. For this un-
coupled model, the mean estimated threshold ratio was  
3.4 ± 0.2, which is similar to the 3.5 predicted by the diffu-
sion. Thus, there is a close coupling of the functions at the 
predicted value. 

Next we evaluated the proportional-rate diffusion 
model by estimating the exponent of the more general 
power-rate diffusion model. The mean estimated exponent 
was 1.1 ± 0.1, which was not reliably different than the 
value of 1.0 predicted by the proportional-rate model. 
Thus, proportional scaling of motion strength accounts for 
the results of this experiment. 

Experiment 2:  
Speed-accuracy tradeoff 

In Experiment 1, the proportional-rate diffusion model 
accounted for both response time and accuracy. In particu-
lar, it showed a specific coupling between these dependent 
variables. In Experiment 2, we measure the coupling while 
manipulating the speed-accuracy tradeoff. Observers can 
trade accuracy for speed depending on instructions or other 
task demands (e.g., Wickelgren, 1977; Ruthruff, 1996). The 
proportional-rate diffusion model predicts that the close 
coupling between response time and accuracy is consistent 
for any speed-accuracy tradeoff. 

Methods 
Two observers (JP and AH) performed a similar motion 

task as in Experiment 1. Motion coherence was varied over 
7 log-spaced steps from 0.8% to 51.2%. Speed stress was 
manipulated by instructing observers at the beginning of a 
session to aim for a mean response time in the most diffi-
cult condition (lowest motion coherence) of either 0.5, 1.0, 
or 2.0 s. Observers received no instruction regarding mean 
response times for other conditions. Because observers 
without explicit instruction tend to produce response times 
of about 1 s at the lowest motion coherence, these three 

sets of instructions effectively introduced speed instructions 
for fast, intermediate, and slow response times, respectively.  

At the end of each block of trials, observers received 
feedback about their mean response time in the hardest 
condition and their average accuracy for all conditions. 
There were five sessions at each of the three speed instruc-
tion levels; the order of the speed instruction levels was 
counterbalanced across sessions. Each session consisted of 
6 blocks of 28 trials, for a total 168 trials per session. Over-
all this resulted in 120 trials per condition. 

Results and discussion 
The results of Experiment 2 for the two observers are 

shown in Figure 7. For each observer, the three speed in-
struction conditions are shown by separate symbols, and 
the proportional-rate diffusion model is fit to each condi-
tion separately as shown by the solid curves. To a first ap-
proximation, the chronometric functions are vertically 
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Figure 7. Experiment 2: Response time and accuracy as a func-
tion of motion strength and speed instruction. Observers are
shown in separate columns. Speed instructions had large effects
on response time for low motion strengths and little effect for
high motion strengths.  
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scaled copies of one another. The main effect of speed in-
struction was on the response time at low motion coher-
ence. The observers were successful at matching their per-
formance at low coherence to the instructed 0.5-, 1.0-, and 
2.0-s response times. In addition, there was an effect on 
accuracy with longer instructed times yielding higher accu-
racy. In summary, the proportional-rate diffusion model 
accounts for the effect of stimulus strength across a variety 
of speed-accuracy tradeoffs. 

The parameters estimated from the fits to the propor-
tional-rate diffusion model are shown in Figure 8 with a 
separate panel for each parameter. In the top panel, the 
normalized bound is shown as a function of the instructed 
speed. For both observers, the results show the expected 
large variation in A! from near 0.5 with the fast speed in-
struction to 1.3 with the slow instruction. This change in 
the bound predicts a change in the decision time from 0.25 
to 1.7 s, a seven-fold increase. The sensitivity and mean 
residual time parameter estimates are shown in the middle 
and bottom panels, respectively. There appears to be a 

small effect on both. The mean sensitivity decreases from 
28 to 25.  This may be due to less effective integration of 
information over the longer time periods. The mean resid-
ual time decreases from 313 to 296 ms. We discuss these 
small effects below. 

To evaluate the effect of the speed instruction more 
closely, we used the 4-parameter uncoupled model to esti-
mate the threshold ratio for each speed-accuracy tradeoff 
condition. The estimated parameter values are shown in 
Table 3 for the three conditions and both observers. The 
grand average threshold ratio was 3.0 ± 0.3, which was be-
low the value of 3.5 predicted by the diffusion model. By a 
likelihood ratio test, only two of the six conditions were 
reliably better fit by the uncoupled model at a p < .05 
significance level. But see below an alternative account. 

To examine the effect of the speed instruction on 
stimulus scaling, we fit the 4-parameter power-rate diffusion 
model. The estimated parameters are shown in Table 4 for 
all conditions and both subjects. The grand average expo-
nent was 1.2. While this was not much higher than 1.0, the 
2-s speed instruction showed exponents of 1.4 and for both 
observers was a reliable improvement in the fit (p < .001). 
Thus, while the scaling was nearly proportional, there was a 
reliable deviation for the longest instructed speed.  
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Further analysis yields three additional comments. 
First, if one starts with the model that includes the free ex-
ponent for stimulus scaling and then allows the threshold 
ratio to vary, there is no reliable improvement in the fit. 
For this analysis, the estimated threshold ratio is 3.6 ± 0.3. 

 
Speed 

instruction 
Observer A! k tR Threshold 

ratio 
22(1) 

0.5 AH 0.48 29 0.313 2.8 2.2 
0.5 JP 0.44 24 0.317 3.4 0.0 
1.0 AH 0.89 24 0.320 2.6 6.4* 
1.0 JP 0.85 28 0.327 4.0 2.6 
2.0 AH 1.36 22 0.299 2.5 6.8* 
2.0 JP 1.26 18 0.305 2.5 7.9** 

Table 3. Experiment 2: Parameter values for uncoupled model. 
Speed instructions and tR in seconds. The 22 is based on a likeli-
hood ratio test comparing this uncoupled model to the propor-
tional-rate diffusion model. * p<.05, ** p< .01. 

 
Speed 

instruction 
Observer A! k tR &3 22(1) 

0.5 AH 0.46 27 0.324 1.25 3.6 
0.5 JP 0.45 24 0.318 1.01 0.0 
1.0 AH 0.85 26 0.339 1.23 6.2* 
1.0 JP 0.87 25 0.332 0.95 0.4 
2.0 AH 1.30 24 0.352 1.40 28.0*** 
2.0 JP 1.23 20 0.361 1.38 23.2*** 

Table 4. Experiment 2: Parameter values for power-rate diffusion 
model. Speed instruction and tR in seconds. The 22 is based on a 
likelihood ratio test comparing this power-rate diffusion model 
to the proportional-rate diffusion model. *p < .05, ** p < .01, *** 
p<.001. 

 

Figure 8. Experiment 2: Effect of speed instruction on parame-
ters of proportional-rate diffusion model. A. Speed instruction
effects on bound. The bound increases with the increasing time
of the speed instruction. B. Speed instruction effects on sensitiv-
ity. C. Speed instruction effects on mean residual time. The pri-
mary effect of the speed instruction is on the bound. 
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Thus, if one accepts the more general power function scale, 
the coupling between response time and accuracy is main-
tained across a range of speed-accuracy conditions.  

Second, there are at least two possible accounts of the 
larger exponents estimated for the longest speed instruction 
condition. The obvious possibility is the direct dependence 
of stimulus scaling on the speed-accuracy tradeoff, but such 
an effect is unexpected. Alternately, the longest speed in-
struction results in much larger effects on response time. 
This makes it easier to estimate the exponent. Thus, it may 
be that there is a small deviation from proportionality in all 
conditions, but they are easier to detect in the longest 
speed instruction condition.  

Third, in the initial 3-parameter analysis of this ex-
periment, the residual time parameter varied with speed 
stress. Specifically, increasing the target time decreased the 
residual time estimate. For the more general 4-parameter 
exponent model, this pattern was reversed. In this case, 
increasing the target time increased the residual time esti-
mate. Because there are no data on the lower asymptote of 
the function, the estimated mean residual time is very sen-
sitive to the shape of the function. Thus, we suggest the 
deviation in the mean residual time may be due to impreci-
sion in the shape of the function rather than the residual 
time per se. 

In summary, we found that the interaction of stimulus 
strength and speed instructions can be accounted for by the 
power-rate diffusion model. There is a reliable small devia-
tion in the exponent beyond proportionality but no reliable 
deviation for the threshold ratio expected for the power-
rate diffusion model.  

Experiment 3: Response time  
for high accuracy conditions 

Perhaps the majority of response time experiments 
have been performed under conditions in which accuracy is 
perfect or near-perfect. Under such conditions, response 
time still improves with increasing stimulus strength. This 
effect is described by Piéron’s Law, which posits that mean 
response time tT(x) varies as a power function of the stimu-
lus strength x with an additive constant time tR (e.g., Bon-
net & Dresp, 2001; Mansfield, 1973; Pins & Bonnet, 
1996; Schweickert, Dahn, & McGuigan, 1988),  

( ) ( )T Rt x kx t&' ( . (7) 

This function has been used to describe the effect of stimu-
lus strength in many suprathreshold tasks, including mo-
tion (Hohnsbein & Mateeff, 1992) and contrast 
(Burkhardt, Gottesman, & Keenan, 1987). In this experi-
ment, we tested whether the proportional-rate diffusion 
model can also account for the response times measured 
with near-perfect accuracy.  

Methods 
Two observers (JP and MK) performed a left-right di-

rection discrimination task on dynamic random dot fields 
of varying motion coherence (5 log-spaced steps: 10, 18, 32, 
56, and 100% coherence). Observers received the following 
instructions: “This experiment includes relatively easy con-
ditions. Please respond as quickly as possible while main-
taining an accuracy of at least 95% correct (5% errors). For 
this experiment, one can emphasize speed at the expense of 
a few errors on harder trials.” The emphasis on speed and 
the allowance of a small proportion of errors were intended 
to deter observers from trying to avoid making any errors 
by spending especially long amounts of time on the hardest 
trials. Similar small error rates have been allowed in previ-
ous high accuracy studies. The task was otherwise identical 
to Experiment 1. Each observer participated in five sessions 
and each session consisted of 10 blocks of 20 trials. This 
yielded 200 trials per condition per observer. 

Results and discussion 
As shown in Figure 9, response time decreased with in-

creasing motion strength and accuracy was perfect or near 
perfect across all conditions. The response times were simi-
lar to that observed in previous experiments in correspond-
ing conditions. For example, in Experiment 1 (Figure 6), 
compare the accuracy of the 10% coherence condition 
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Figure 9. Experiment 3: The proportional-rate diffusion model
can account for response times that obey Piéron’s Law. Smooth
curves depict the predictions of the best-fitting proportional-rate
diffusion model and dashed curves depict the predictions of
Piéron’s Law.  
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(middle of the range) to the accuracy of the 10% condition 
in Experiment 3 (the lowest coherence). Although accuracy 
was high across all conditions, the ~5% errors observed in 
the hardest condition was similar to the accuracy observed 
in the corresponding condition of Experiment 1. 

The fit to Piéron’s law is shown by the dashed curve. 
For both observers, Piéron’s law is an excellent description 
of the results. The response time and accuracy data are also 
fit to the proportional-rate diffusion model, and the results 
are shown by the solid curves. For response time, this fit is 
virtually indistinguishable from that of Piéron’s law. Esti-
mated parameter values are similar to those found in 
Experiment 1 (JP: A!= 0.59 ± 0.01, k = 21±1, tR = 300 ± 1; 
MK: A!= 0.71 ± 0.01, k = 22 ± 1, tR = 307 ± 2). Using the  
4-parameter uncoupled model, the estimated threshold ra-
tio was 3.2 and 3.8 for JP and MK, respectively. The mean 
threshold ratio was 3.5 ± 0.3. Using the 4-parameter power-
rate model, the exponents were 1.05 and 0.92 for JP and 
MK, respectively. The mean exponent was 0.99 ± 0.07. 
Thus, despite the narrow range of accuracy data, both the 
threshold ratio and the exponent remained consistent with 
the proportional-rate diffusion model.  

The proportional-rate diffusion model has two proper-
ties that are preferable to Piéron’s Law. First, Piéron’s Law 
does not make predictions about accuracy, whereas the dif-
fusion model does. Second, the predictions of the two 
models diverge at lower stimulus strengths. Piéron’s Law 
predicts that response time approaches infinity as stimulus 
strength approaches zero (cf. Bonnet & Dresp, 2001). In 
contrast, the proportional-rate diffusion model predicts 
that response time approaches a ceiling as the stimulus 
strength approaches zero. Such a ceiling is seen in all of the 
experiments we have conducted and is common in the 
relevant prior studies (e.g., Pike, 1971). In conclusion, at 
least some results consistent with Piéron’s Law are also con-
sistent with the predictions of the proportional-rate diffu-
sion model. 

Experiment 4:  
Generality of response modality 

The next experiment investigated whether the propor-
tional-rate diffusion model can account for data from other 
response modalities. Thus far, observers made saccadic eye 
movements to peripheral targets to indicate their decisions. 
To address the generality of the model, we performed an 
experiment in which observers made finger movements to 
press buttons. 

Methods 
Two observers (JP and EH) performed the left-right di-

rection-of-motion discrimination on dynamic random dot 
fields of varying motion coherence (8 steps: 7 log-spaced 
steps from 0.8% to 51.2%, and 100%). The stimuli were 
otherwise identical to those used in Experiment 1. Observ-

ers indicated their decisions by either making an eye 
movement to a corresponding peripheral target (as in 
Experiments 1-3) or by pressing a button with the corre-
sponding left or right hand. On each session, observers per-
formed one set of trials using one response modality, took a 
break (10-30 min), and then performed a second set of tri-
als using the other response modality. The order was alter-
nated across days. Gaze position was monitored during the 
button press experiment to ensure accurate fixation using 
the same criteria applied to the eye movement experiments. 
After two-to-four practice sessions, each observer partici-
pated in five sessions. Each session consisted of two parts, 
one with each response modality. Each part consisted of six 
blocks of 32 trials. There was a total of 120 trials per condi-
tion per observer. 

Results and discussion 
As shown in Figure 10, the response time and accuracy 

data from the two response modalities were similar. For JP, 
eye movement responses were faster for all motion coher-
ences. For EH, eye movement response times were faster 
than button press response times at the highest coherence 
and reversed elsewhere. The response time and accuracy 
were fit in Figure 10 by the proportional-rate diffusion 
model with all three parameters free to vary with response 
modality. The estimated parameters are in Table 5. The 
effect of response modality is specific to the residual time 
for JP but affects all three parameters for EH. Using the  
4-parameter uncoupled model, the grand mean of the 
threshold ratio estimated over both conditions and both 
observers was 3.3 ± 0.3. Using the 4-parameter power ratio 
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Figure 10. Experiment 4: Response time and accuracy as a func-
tion of motion strength for eye and finger movements. Observers
are shown in separate columns. The proportional-rate diffusion
model fits both kinds of responses. 
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model, the grand mean of the exponents estimated over 
both conditions and both observers was 1.04 ± 0.03. Both 
values are consistent with the proportional-rate diffusion 
model. Thus, we replicate our previous results for both eye 
and finger movements.  

Experiment 5:  
Generality of the stimulus and task 

In the previous four experiments, the proportional-rate 
diffusion model has accounted for response time and accu-
racy in a direction-of-motion discrimination task. To test 
the generality of this model to other psychophysical tasks, 
we collected data from two additional tasks. The first task 
was a contrast discrimination in the presence of dynamic 
luminance noise, in which observers decided which of two 
noisy patches had a higher contrast (Eckstein & Whiting, 
1996; Legge, Kersten, & Burgess, 1987). The second task 
was contrast detection in noise. In this detection task, both 
patches contained noise, but one patch also contained a 
noisy luminance increment. The contrast detection task 
was otherwise identical to the contrast discrimination task. 
We investigated this second task because contrast detection 
often yields psychometric functions that are steeper than 
those observed in discrimination (Leshowitz et al., 1968; 
Foley & Legge, 1981).  

Methods 
Two observers (JP and MK) performed a two-alternative 

contrast-increment discrimination or detection task in 
which they determined which of two peripheral disks had 
higher contrast. Specifically, the stimuli were 0.8° diameter 
disks centered 10° in the periphery that had higher lumi-
nance than the surround (57 cd/m2). The contrast of one 
disk was fixed and the other was increased to vary stimulus 
strength. (Let the luminance of the disk be LD and the lu-
minance of the surround be LS. Then contrast was defined 
by %LD – LS%/LS) Each trial began with fixation of the cen-
tral red fixation point. After fixation was achieved, two 
patches of dynamic random pixel Gaussian noise appeared 
to the left and right. The size and position were the same as 
the targets in the motion task. The noise was updated on 
each refresh (75 Hz). The appearance of these noise patches 
indicated the beginning of a warning period whose dura-
tion was a random value drawn from an exponential distri-
bution, as in the previous motion experiments. At the end 
of this warning period, two disks appeared, one in the cen-

ter of both of the peripheral noise patches. One of the 
disks had higher luminance contrast than the other. In the 
contrast discrimination task, the pedestal disk contrast was 
15%, and the target patch contained an additional contrast 
increment that varied randomly from trial to trial across  
8 values: 0, 1, 2, 4, 8, 16, 32, and 85%. In the contrast de-
tection task, the pedestal disk contrast was zero and only 
the target disk had any contrast. The dynamic random pixel 
noise from the patches was overlaid on the target disks and 
their immediate surround. This external noise had a stan-
dard deviation of 50% contrast in all conditions.  

Observers indicated their decision by making a saccadic 
eye movement to the peripheral disk with higher contrast. 
The analysis and classification of eye positions were per-
formed in the same manner as for the previous experi-
ments. Each observer participated in five sessions; each ses-
sion consisted of six blocks of 32 trials for a grand total of 
120 trials per condition per observer. 

Modality Observer A! k tR ln(L) 
Eye JP 0.67 24 0.318 12.9 
Eye EH 0.79 11 0.304 1.0 

Finger JP 0.67 24 0.399 -2.9 
Finger EH 0.64 10 0.330 2.1 

Table 5. Experiment 4: Parameter values for proportional-rate 
diffusion model. L = likelihood; tR in seconds. 

Results and discussion 
In the contrast discrimination task, both response time 

and accuracy depended on the magnitude of the contrast 
increment (Figure 11). As the contrast increment increased, 
response time decreased and accuracy increased. These ef-

200

400

600

800

1000

Re
sp

on
se

 T
im

e 
(m

s)

MK

JP

1 10 100
0.50

0.75

1.00

Pr
op

or
tio

n 
Co

rre
ct

Contrast Increment (%)
0

MK

JP

 

Figure 11. Experiment 5: Discrimination: Response time and
accuracy as a function of the contrast increment. The power-rate
diffusion model fits this contrast discrimination task with an ex-
ponent of about 1.2. 
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Task Observer A! k tR &3 ln(L) 
Discrimination JP 0.61 34 0.305 1.25 12.5 
Discrimination MK 0.60 32 0.404 1.09 15.7 
Detection JP 0.69 16 0.280 2.48 12.6 
Detection MK 0.60 29 0.305 1.55 19.8 

Table 6. Experiment 5: Parameter values for power-rate diffusion 
model. L = likelihood; tR in seconds. 

fects of stimulus strength were quite similar to those ob-
served in the motion experiments. The fits of the  
3-parameter proportional-rate diffusion model are shown in 
Figure 11 for the two observers. The model provides a good 
account of the observed pattern of response time and accu-
racy. For this discrimination task, we focused on the  
4-parameter power-rate model to facilitate comparisons to 
the detection task where deviations from proportionality 
were expected. The best-fit parameters of the power-rate 
model are given in Table 6. The estimated exponents were 
1.25 and 1.09 for JP and MK, respectively. Using a  
5-parameter version of the uncoupled model, the threshold 
ratio was 2.7 and 2.9 for JP and MK, respectively. These 
were our largest deviations from the predicted 3.5. 
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Figure 12. Experiment 5: Detection: Response time and accu-
racy as a function of contrast in a detection task. For detection,
the power-rate diffusion model fits the data with an exponent of
about 2.0. 

In the contrast detection task, response time and accu-
racy also varied systematically with the magnitude of con-
trast (Figure 12). For this task, both the response time and 
accuracy functions exhibited a stronger dependence on 
contrast. To fit this effect, it was necessary to apply a diffu-
sion model with a power function relation between stimu-
lus strength and mean drift rate (likelihood ratio test for JP 
and MK: 22(1) = 213 and 45, p << .001 for both). The best-
fit parameters for the 4-parameter power-rate model are 
shown in Table 6 along with the discrimination data. Using 
the 5-parameter uncoupled model, the estimated threshold 
ratios were 2.8 and 3.1 for JP and MK, respectively. Thus, 
both contrast discrimination and detection showed thresh-
old ratios of about 3.0. One possible account for this devia-
tion from the 3.5 predicted by the proportional-rate diffu-
sion model is provided by adding parameter variability and 
is considered briefly in the General discussion. 

Our results are consistent with previous findings of a 
steeper psychometric function for detection than for dis-
crimination (Leshowitz et al., 1968; Foley & Legge, 1981). 
Our results extend previous results by demonstrating a cor-
responding dependence for response time. Moreover, these 
results show a similar coupling (threshold ratio ~3.0) be-
tween response time and accuracy for detection and dis-
crimination tasks, despite the different stimulus scaling. 

General discussion 

Summary of results 
We investigated the effect of stimulus strength on re-

sponse time and accuracy using the proportional-rate diffu-
sion model and its power function generalization. A single 
sensitivity parameter in the model was able to account for 
the effect of stimulus strength on both response time and 
accuracy. This success was repeated for different speed in-
structions, conditions with and without errors, two re-
sponse modalities, and three different stimulus judgments. 
In addition, the effect of varying the speed-accuracy tradeoff 
was accounted for primarily by the bound parameter. Thus, 
the model accounts for both response time and accuracy 

and has distinct parameters for sensitivity and the speed-
accuracy tradeoff. 

Three relevant phenomena 
In the first part of the Discussion, we address three 

phenomena of this study. The first two have been the focus 
of our analyses: coupling of response time and accuracy, 
and stimulus scaling. The third is temporal summation, 
which is central to the diffusion model and is addressed by 
Experiment 2. 

Coupling of response time and accuracy 
A principle goal of the sequential sampling models is to 

provide an account of response time and accuracy with a 
common mechanism. This is in contrast with a previous 
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generation of work that was specialized for either accuracy 
(e.g., signal detection theory, Green & Swets, 1966) or re-
sponse time (e.g., Piéron’s Law, Pins, & Bonnet, 1996). 
The prior literature has addressed the coupling of response 
time and accuracy in a variety of ways (e.g., Mansfield, 
1973; Santee & Egeth, 1982; Palmer, 1998). For example, 
Mansfield (1973) estimated photopic and scotopic sensitiv-
ity functions using thresholds based purely on response 
time and found results consistent with standard estimates 
based on accuracy thresholds. This consistency supports a 
common mechanism for these effects. 

One way the common mechanism hypothesis may fail 
is when manipulations affect the residual time and not the 
decision time. Under such conditions, one expects effects 
on time and not on accuracy. Another way is that under 
high accuracy conditions, performance may depend on dif-
ferent mechanisms than under low accuracy conditions. 
Thus, typical response time experiments with high accuracy 
may be based on different mechanisms than typical accu-
racy experiments with lower accuracy (e.g., Mordkoff & 
Egeth, 1993; Santee & Egeth, 1982). However, neither of 
these options are supported for the simple discriminations 
studied here. 

In this study, we evaluated the coupling of response 
time and accuracy by measuring sensitivity with separate 
estimates based on response time or accuracy. The esti-
mates were combined in a threshold ratio that remains 
constant if a common mechanism couples the dependent 
measures. The threshold ratios estimated in each of our five 
experiments are shown in Figure 13. For Experiment 1, the 
estimate is the mean and standard error over six observers. 
For the other experiments, it is the grand mean and stan-
dard error over two observers with multiple conditions. For 
all experiments, the threshold ratio ranges between 2.9 and 
3.6, which is close to the 3.5 predicted by the proportional-
rate and power-rate diffusion model. Only the contrast ex-
periment shows a deviation from the prediction. Thus, the 

threshold ratio is reasonably consistent over variations in 
the speed-accuracy tradeoff, high and low accuracy condi-
tions, and response modality.  

Alternative models predict different threshold ratios. 
To take an extreme example, consider an independent 
sampling model with a high threshold assumption (e.g., 
Maloney & Wandell, 1984). This model is particularly in-
teresting because it modifies two of the central assumptions 
of the diffusion model: The decision is based on momen-
tary evidence instead of accumulating evidence, and an er-
ror response is triggered by guessing rather than by noise. 
This model is described in more detail in the Appendix. 
For such a model, the shapes of the psychometric and 
chronometric functions are congruent and the predicted 
threshold ratio is 1.0. Thus, it is easy to reject this extreme 
version of independent sampling based on the current ex-
periments. More generally, this alternative model illustrates 
the potential of the threshold ratio to discriminate between 
models. 

Scaling of stimulus strength 
Theories of stimulus scaling in visual psychophysics 

have been dominated by some form of a power function of 
stimulus strength. For example, Nachmias and Kocher 
(1970) and Pelli (1987) added a power function to signal 
detection theory with Gaussian distributions to predict psy-
chometric functions. Similarly, the Weibull function 
(Quick, 1974) contains a power function of the stimulus 
strength. Pelli (1987) compared the two models of the psy-
chometric function and found they are very similar: In a 
two-alternative forced-choice experiment, the two expo-
nents are approximately proportionally related with a 
Gaussian exponent of 1.0 equivalent to a Weibull exponent 
of about 1.2. In this article, power function scaling is in-
corporated into the power-rate diffusion model and fit to 
both response time and accuracy. The results were similar 
to previous measurements based on accuracy alone. For 
direction-of-motion discrimination, we find best-fitting 
power function exponents of 1.2, 1.2, and 1.0 for 
Experiments 1, 2, and 4, respectively. These values are in 
the range of exponents estimated using a Weibull function 
of accuracy data (Weibull exponent = 0.9–1.4, Gold & 
Shadlen, 2003; see also Britten, Shadlen, Newsome, & 
Movshon, 1992). For contrast discrimination, we find a 
mean exponent of 1.15 on the change in contrast. This 
value is similar to the value of the exponent of Gaussian 
functions fit to accuracy data (exponent = 1.05, Leshowitz 
et al., 1968). For contrast detection, we find a mean expo-
nent of 2. This value is also similar to the value of expo-
nents reported in earlier experiments (Gaussian exponent = 
2.0, Leshowitz et al., 1968; Weibull exponent = 3.0, Foley 
& Legge, 1981). In summary, for the three cases studied, 
the exponents measured in response time experiments are 
similar to those measured in accuracy experiments.  

We propose that the power-rate diffusion model can be 
used to scale stimuli in the same way as traditional models 
of the psychometric function. This diffusion model extends 
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Motion Task
(Experiment 1)

Speed-Accuracy
(Experiment 2)
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Response Modality
(Experiment 4)

Contrast Tasks
(Experiment 5)

Threshold Ratio  

Figure 13. Summary of threshold ratio estimates from all experi-
ments. 
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the previous work on accuracy psychometric functions by 
encompassing both response time and accuracy and thus a 
larger range of stimulus strength. In addition, this kind of 
model can be a departure point for more elaborate theo-
ries. For example, Link (1992) describes a random walk 
model based on Poisson differences that yields Weber’s 
Law. 

Temporal summation  
Diffusion models assume perfect integration of noisy 

information over time. This is one of the main assumptions 
that distinguishes the model from its alternatives. 
Experiment 2 provides a measure of temporal summation 
because manipulating the speed instruction varies the 
amount of time that information can accumulate from the 
stimulus. One approach to measuring temporal summation 
is to estimate the accuracy threshold as a function of the 
duration of the stimulus (e.g., Barlow, 1958). For such an 
experiment, given perfect integration and no noise, one 
expects Bloch’s law up to some critical duration. In other 
words, the threshold is inversely proportional with dura-
tion. In the presence of independent noise over time, the 
predicted decline in threshold is inversely proportional to 
the square root of time (e.g., Smith, 1998; Watamaniuk, 
1993). One also expects some decline simply for independ-
ent sampling over time (probability summation, Watson, 
1979).  

To measure improvements of accuracy over time, we 
estimated, for each speed instruction condition, both the 
accuracy threshold and the mean decision time for that 
threshold stimulus. The mean decision time is the pre-
dicted mean response time for the motion coherence corre-
sponding to 75% correct, minus the estimated residual 
time. Figure 14 shows the log scaled accuracy threshold 
versus the corresponding log scaled mean decision time. 
For both observers, all points on the log-log plot fall near 
the line representing a power function with an exponent of 
around –0.46. This decline is slightly less than the pre-
dicted –0.5. Thus the accuracy and response times in this 
task are consistent with an almost perfect additive accumu-
lation of sensory evidence.  

There have been several direct measurements of mo-
tion coherence accuracy thresholds as function of duration. 
In an early study, Watamaniuk and Sekuler (1992) esti-
mated critical durations around 0.5 to 1.0 s, and a more 
detailed follow up study (Watamaniuk, 1993) found thresh-
old-versus-duration slopes of about –0.5 over a range from 
300 to 1500 ms. Burr and Santoro (2001) measured dura-
tions from 0.1 to 10 s for several motion tasks and found 
threshold-versus-duration slopes between –0.5 and –1.0 and 
a critical duration of 1.0 s or more. Gold and Shadlen 
(2003) measured durations from 100 to about 700 ms and 
found slopes near –0.5 and no sign of a critical duration in 
this range. These critical durations stand in contrast with 
the much shorter values measured for motion detection 

detection without noise (Simpson, 1994; for a similar com-
parison in contrast, see Barlow, 1958, versus Eckstein, 
1994). 

There are several possible modifications to the diffu-
sion model that introduce less than perfect integration 
(Smith, 1998). One is to introduce a leak in the diffusion 
process (Busemeyer & Townsend, 1993; Usher & 
McClelland, 2001). Another is to add linear filters as a 
front end to the decision process that attenuate sustained 
signals (Smith, 1995). Such a linear filter can also account 
for steeper threshold-versus-duration slopes often found 
with very short durations. In principle, these options can be 
distinguished by measuring the extent to which the thresh-
old-versus-duration slope and the critical duration vary with 
stimulus conditions. We consider these alternative models 
and others in the final section of the Discussion. In conclu-
sion, the results of Experiment 2 are consistent with near-
perfect integration that has some leak or other imperfec-
tion. 
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Figure 14. Relationship between accuracy threshold and esti-
mated decision time in Experiment 2. Accuracy threshold de-
creases with the square root of the estimated decision time at 
accuracy threshold. The diagonal line has a log-log slope of –1, 
which follows Bloch’s law. 

Limitations of the model 
While the version of the diffusion model considered 

here works well in many respects, it has been criticized 
along two lines. The first is that it predicts equal response 
times for correct and error responses. This point is dis-
cussed in detail below. The second is the predicted shape of 
the response time distributions. For example, the diffusion 
model predicts flat hazard functions while peaked hazard 
functions are often observed (e.g., Ratcliff, van Zandt, & 
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Figure 15. Comparison of error and correct response time. Mean
error response time is plotted against mean correct response
time. A. Results for six observers from Experiment 1. Each point
corresponds to the error and correct mean response times for a
given motion strength in a particular observer. Data from the two
lowest nonzero motion strengths are shown. The diagonal line
indicates equal response times. B. Similar plot for observer JP
from the other experiments. 

McKoon, 1999). We do not pursue this second issue in this 
article because of the limited data for individual conditions 
collected in these experiments (100 trials per condition). 
Because of our focus on the effect of stimulus strength, we 
chose to measure many conditions rather than the response 
time distribution for individual conditions. 

Error response times 
The symmetric diffusion model predicts identical mean 

response times for correct and error responses (Laming, 
1968). Early tests of the diffusion model and related ran-
dom walk models had focused on failures of this prediction 
(for a review, see Luce, 1986). In response, generalizations 
of the symmetric diffusion model have been developed that 
can predict either fast or slow errors (e.g., Link, 1975; 
Ratcliff & Rouder, 1998). Alternatively, Green, Smith, and 
von Gierke (1983) have argued that details of the experi-
mental procedure might have inflated the difference be-
tween correct and error response times. In their experi-
ment, observers received extensive training (performing 
over 20,000 trials) and performed a task in which the onset 
of the stimulus was not predictable due to the use of an 
exponentially distributed warning foreperiod. They found 
relatively small differences between correct and error re-
sponse times. 

In our experiments, mean response times for errors 
were slower than those for correct responses. The top panel 
of Figure 15 shows a scatterplot of mean error response 
time versus mean correct response time. Each data point 
corresponds to the mean correct and error response times 
from a single motion coherence from Experiment 1. Data 
are shown from the two lowest nonzero motion coherences, 
as there are very few errors at higher motion coherences. 
Most of the data points fall above the identity line demon-
strating that error responses are slower than correct re-
sponses. The overall mean error response time is 847 ms 
compared to a mean correct response time of 769 ms. The 
mean difference over observers is not reliable in this par-
ticular experiment (77 ± 42 ms) but has been found to be 
reliable in similar experiments. 

The bottom panel of Figure 15 shows the correct versus 
error response time for observer JP in the other relevant 
experiments. (It does not include Experiment 2, condition 
3, because it had much longer mean response times, and 
Experiment 3 because it had almost no errors.) Once again 
there is about a 50-ms difference between correct and error 
mean response time. A similar analysis of monkey data 
from our laboratory exhibits error response times that are 
reliably slower than correct by about 90 ms (743 ms vs. 
833 ms; Roitman & Shadlen, 2002). The monkey data  
are clear on this point largely because they are based on  
500 trials per condition compared to 100 trials per condi-
tion for the human data.  

In conclusion, we estimate that under these conditions, 
errors are slower than correct responses by an amount on 

the order of 75 ms. This is consistent with the differences 
found in Green et al. (1983) and is a small amount com-
pared to the effects of discriminability and the speed-
accuracy tradeoff, which have effects of up to 1000 ms or 
more (e.g., Experiment 2). On the other hand, it is enough 
to require the consideration of alternative theories, some of 
which are discussed below. Despite this failure, we argue 
that the proportional-rate diffusion model deserves credit as 
a good approximation for the large effects of stimulus 
strength on mean correct response time.  

Alternative theories 
In this work, we have focused on a simple version of 

the diffusion model among the possible sequential sam-
pling models. This choice is motivated by the simplicity of 
this model’s analytic predictions and its close relation to 
both signal detection theory and the “ideal observer” se-
quential probability ratio test (SPRT) model (Laming, 1968; 
Stone, 1960; Wald, 1947). In the next section, we briefly 
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review the most relevant alternative theories of response 
time. Nearly all generalize the simple diffusion model de-
scribed thus far.  

Relative judgment theory 
Our analysis of the chronometric and psychometric 

functions is based on Link’s relative judgment theory and 
the closely related wave-difference theory (Link, 1975, 
1978a, 1978b, 1992; Link & Heath, 1975). In these theo-
ries, the decision is based on sampling the difference be-
tween two random variables in discrete time. Only very 
general constraints are placed on these difference distribu-
tions (see Luce, 1986; Smith, 1990). Link derived general 
predictions for this class of models with minimal scaling 
assumptions. He also extended the model to account for 
response bias, Weber’s Law, and other phenomena. How-
ever, he did not pursue the specific scaling assumption em-
phasized here.  

For proportional scaling assumptions, the predictions 
of relative judgment theory are quite similar to the predic-
tions of the proportional-rate diffusion model. For response 
time, they predict identical chronometric functions. Thus, 
the chronometric function prediction is quite general. For 
accuracy, relative judgment theory predicts a logistic func-
tion of stimulus strength but in a parameter related to the 
moment generating function of the difference distribution, 
rather than the mean. This parameter reduces to –2"/#2 
for a Gaussian difference distribution, which is equivalent 
to the diffusion model under our assumptions. In sum, 
Link’s analysis shows that the shape of the chronometric 
and psychometric functions is general to a range of sequen-
tial sampling models.  

Diffusion models with parameter variability 
Ratcliff and colleagues have generalized the diffusion 

model to account for response time and accuracy in a vari-
ety of tasks (Ratcliff, 1978, 2002; Ratcliff & Rouder, 1998, 
2000; Ratcliff & Smith, 2004). Their generalizations incor-
porate additional variability in the drift rate and the start-
ing point. Increasing the trial-to-trial variability in the drift 
rate results in error response times that are slower than cor-
rect response times. Increasing the trial-to-trial variability in 
the starting point results in error response times that are 
faster than correct responses.  

Adding a modest amount of parameter variability can 
provide an account of the slow errors observed here. For 
example, we fit each observer in Experiment 1 with a ver-
sion of the proportional-rate diffusion model that had vari-
ability in the drift rate parameter. We assumed that this 
variability was independent of stimulus strength. This 
added one parameter #" for the standard deviation of the 
drift rate. Averaged over observers, the estimated parame-
ters were k = 25 ± 5, A!= 0.74 ± 0.06, tR = 354 ± 16 ms, 
and #" = 0.7 ± 0.3. The fit clearly improved for two of the 
six observers, and over all observers the improvement was 
significant (likelihood ratio test, 22(6) = 22, p < .01). In this 

generalized model, the threshold ratio is not fixed to 3.5 
and was found to average 3.2 ± 0.2 over observers. Thus, 
the features that are critical to the proportional-rate diffu-
sion model are preserved in a diffusion model with modest 
parameter variability. In addition, parameter variability 
provides one possible account of the reduced threshold 
ratio observed for contrast tasks in Experiment 5. In sum, 
adding parameter variability provides a more complete de-
scription of the data, albeit at the price of greater complex-
ity. 

Leaky diffusion models 
A different modification of the diffusion model is to 

change the nature of integration over time. The diffusion 
model assumes perfect memory in its integration process. 
This constraint can be relaxed by including a “leak” by 
which the accumulated evidence decays back to a neutral 
state (Busemeyer & Townsend, 1993; Smith, 1995, 2000). 
Arguments for and against a leak can be found in Usher 
and McClelland (2001) and Ratcliff and Smith (2004), re-
spectively. In Experiment 2, we found some evidence of a 
loss of sensitivity for longer duration responses, consistent 
with a minor leak. More pointed efforts to detect such a 
leak can be found in Huk and Shadlen (2004). 

Nonstationary diffusion models 
Another generalization of the diffusion model is to al-

low the drift rate or bound to vary as a function of time 
within a trial. For example, Smith (1995; see also Burbeck 
& Luce, 1982) has suggested that transient and sustained 
stimuli may result in sensory information with different 
time courses. Sustained stimuli may result in drift rates that 
rise to a constant value, whereas transient stimuli may have 
a drift rate that rises and falls as a brief pulse. An alterna-
tive generalization is to allow the bound to vary with time. 
Ditterich, Mazurek, Roitman, Palmer, and Shadlen (2001) 
considered nonstationary bounds to predict the details of 
response time distributions. In addition, these modifica-
tions have similar effects as incorporating parameter vari-
ability in that they can also account for error response time 
being slower than correct response time.  

Race models 
Yet another alternative to the diffusion model is the 

family of race or accumulator models where evidence for 
each alternative is integrated separately rather than inte-
grated as a single value of relative evidence. The simplest of 
these models assumes the accumulators are independent 
(e.g., Smith & Vickers, 1988; Reddi, Asrress, & Carpenter, 
2003). Alternatively, one can allow some degree of corre-
lated input into separate accumulators (Mazurek, Roitman, 
Ditterich, & Shadlen, 2003). Such a correlated-input race 
model has the diffusion model as a special case with per-
fectly negatively correlated inputs. Thus, a correlated-input 
race model can generalize the diffusion model as do the 
other alternatives considered here. 
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Independent sampling models 
An extreme version of a leaky diffusion model has no 

memory and instead samples stimulus information inde-
pendently over time. Such independent sampling is often 
known as probability summation over time (Watson, 1979). 
For a detection task, Maloney and Wandell (1984) derived 
an independent sampling model with a high threshold and 
stability assumption that predicts the Weibull psychometric 
function and similarly shaped chronometric function 
(Wandell, Ahumada, & Welsh, 1984). While simple ver-
sions of such models predict an exponential response time 
distribution, Maloney and Wandell allowed nonstationary 
inputs, which result in a wider range of distributions. It 
remains to be seen if such an independent sampling model 
can be generalized to discrimination and used to account 
for the data presented here. 

Physiologically motivated theories 
There are now a number of studies that seek the neural 

basis of simple perceptual decisions (e.g., Hanes & Schall, 
1996; Platt & Glimcher, 1999; Ratcliff, Cherian, & 
Segraves, 2003; Roitman & Shadlen, 2002; Romo & 
Salinas, 2003). The motion task used here has previously 
been used in a series of studies exploring both motion per-
ception and eye movement responses (e.g., Newsome et al., 
1989). The results observed with this task have been de-
scribed in a neurally based model developed by Mazurek et 
al. (2003).  

We focus on two places in the chain of neural events: 
the middle temporal area (MT) and the lateral interparietal 
area (LIP). Several pieces of neurophysiological evidence 
suggest that neurons in area MT carry the sensory signals 
relevant to the motion task. Over 90% of the neurons in 
area MT are direction-selective, responding more strongly 
to a preferred direction than to the opposite null directions 
(Albright, 1984; Dubner & Zeki, 1971). Analyses of lesion, 
sensitivity, and microstimulation experiments have linked 
the activity of MT neurons with psychophysical perform-
ance in this motion task (for a review, see van Wezel & 
Britten, 2002). During performance of the random dot di-
rection-of-motion discrimination task, MT neurons re-
spond at a roughly constant rate when the motion stimulus 
is presented, and the response rate of these MT neurons 
changes linearly as a function of motion coherence 
(Britten, Shadlen, Newsome, & Movshon, 1993), consis-
tent with the proportional-rate scaling assumption. A ho-
mologous brain region has also been identified in the hu-
man brain, with similar sensitivities to direction and 
strength of motion (Huk & Heeger, 2002; Rees, Friston, & 
Koch, 2000; Watson et al., 1993). 

Several brain areas have been implicated in planning, 
deciding, and executing saccadic eye movements, including 
LIP, prefrontal area 46, frontal eye fields, and the superior 
colliculus (Gold & Shadlen, 2000, 2001, 2003; Kim & 
Shadlen, 1999; Horwitz & Newsome, 2001a, 2001b; 
Shadlen & Newsome, 2001). In experiments using a re-

sponse time paradigm, the firing rates of LIP neurons 
“ramp up” as a function of strength until achieving a com-
mon level of firing just before a response (Roitman & 
Shadlen, 2002). Within a particular level of motion 
strength, trials with faster response times are correlated 
with steeper LIP responses, suggesting that trial-to-trial vari-
ability in psychophysical performance was related to trial-to-
trial variability in these neuronal responses. These observa-
tions are consistent with an explicit neural representation 
of the temporal accumulation of evidence in favor of a par-
ticular decision.  

The neurally based model of Mazurek et al. (2003; 
Mazurek & Shadlen, 2002) describes the physiology in 
terms of the spike rate distributions of MT and LIP neu-
rons. The differences between the responses of pools of MT 
neurons favoring the two directions are assumed to be the 
sensory input to LIP. LIP integrates the sensory informa-
tion to create a decision variable that is compared to a 
threshold. Some details differ from the more abstract diffu-
sion model. For example, the accumulation process of the 
LIP part of the model is a race between two accumulators: 
one for the left response and one for the right response. 
But, because the inputs are perfectly negatively correlated, 
this is equivalent to a one-dimensional diffusion, except for 
the noise introduced by LIP neurons. Thus, the models 
may appear more different in structure than they are in 
function.  

For response time and accuracy, this neurally based 
model acts very similarly to the proportional-rate diffusion 
model and can predict the psychometric and chronometric 
functions reported here for humans and reported by Roit-
man and Shadlen (2002) for monkeys. In addition, the 
neurally based model also accounts for the observed details 
of the MT and LIP physiology. Differences between the 
predictions of the neural and abstract models emerge in the 
difference between correct and error response times and in 
the shape of the response time distributions. A challenge 
for the future is to understand how the neurally inspired 
features of the model result in behavior that is different 
than predicted by the simpler abstract models.  

Conclusions 
We extended previous analyses of the effect of stimulus 

strength on accuracy to its effect on response time. Assum-
ing perhaps the simplest version of the diffusion model and 
scaling assumptions, we described analytic predictions for 
the chronometric and psychometric functions. The simplic-
ity and success of these analytic functions endorse their 
more general use. 

The results of our experiments revealed a close cou-
pling between response time and accuracy. There is a fixed 
relationship between the stimulus sensitivity measured with 
response time and that measured with accuracy. This cou-
pling is at the heart of a unified account of response time 
and accuracy.  
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Appendix 
This Appendix describes the diffusion model and ap-

plies it to the chronometric and psychometric functions. In 
the initial sections of the Appendix, we introduce the 
discrimination task and the diffusion process. This is 
followed by sections describing a symmetric version of the 
diffusion process and one specifically extended for response 
time. Next, the model is further specialized by normalizing 
the parameters and adding scaling assumptions for stimulus 
strength. These additional assumptions yield the predicted 
chronometric and psychometric functions. These functions 
are derived for both the probability of a particular response 
and for probability correct. Final sections add discussions 
of two alternative models: one that decouples the relation 
between response time and accuracy, and a second model 
that is based on independent sampling. We also discuss 
variability predictions and details of our model fitting. 

Nature of the discrimination task 
We consider only simple discrimination tasks. On each 

trial, an observer is presented with a choice between a or b. 
The choice is based on the presentation of one stimulus 
from the categories Sa and Sb with the corresponding cor-
rect responses of Ra and Rb. Throughout, we assume that 
the difference between stimuli from categories Sa and Sb is a 
change in one attribute, referred to as the stimulus strength 
x. For the tasks we consider here, the stimulus strength is a 
signed quantity. When x > 0, the stimulus is from category 
Sa. When x < 0, the stimulus is from category Sb. When  
x = 0, the stimulus is ambiguous and in the absence of re-
sponse bias is equally likely to be identified as Sa or Sb. 
Stimulus strength takes one value on each trial. Our goal is 
to understand the probability of a correct response as a 
function of stimulus strength and the mean response time 
as a function of stimulus strength.  

Diffusion process with two bounds 
The additive accumulation of infinitesimal amounts of 

evidence in continuous time can be represented as a diffu-
sion process. This process, also known as the Wiener proc-
ess or Brownian motion, is described in many textbooks on 
stochastic processes (e.g., Ross, 1996; Karlin & Taylor, 
1975). For a given stimulus with strength x, denote the ac-
cumulated evidence at time t by the real-valued, random 
variable U(t). A diffusion process has three defining prop-
erties: (a) At time t = 0, the accumulated evidence is zero, 
U(0) = 0. (b) The momentary change in the evidence is a 
random variable that is independent from moment to mo-
ment and is stationary (meaning that it does not change as 
a function of time). (c) The accumulated evidence U(t) is 
normally distributed and has mean and variance: 

4 5

4 5 2

( ) , and 

( ) .

E U t µt

Var U t t#

'

'
 (A.1) li .BP '

The drift rate " is the expected rate at which evidence ac-
cumulates and the squared diffusion coefficient # 2 is the 
expected rate of growth for the variance. The parameters " 
and # are determined by the stimulus strength x. For our 
discrimination task, we adopt the convention that positive 
values of U(t) represent evidence for stimuli in Sa and nega-
tive values represent evidence for stimuli in Sb.  

It is helpful to consider a discrete time version of this 
process where discrete increments of evidence are accumu-
lated every 6t s. The change in the accumulated evidence 
over 6t s is  

( ) (tU U t t U t)6 ' ( 6 ) , (A.2) 

where 6Ut is a normally distributed random variable. Be-
cause the evidence accumulation is assumed to be station-
ary, one can drop the subscript t. The distribution of 6U(t) 
has mean and variance of "6t and #26t, respectively. The 
continuous diffusion process U(t) is thus approximated by 
a process where discrete increments are accumulated over n 
steps of time 6t. Specifically, at time t = n6t,  

1
( )

n

i
i

U n t U
'

6 ' 6/ . (A.3) 

The 6Ui represent the momentary evidence for choice a or for 
choice b over an epoch 6t. In summary, one can approxi-
mate the diffusion process in continuous time by a Gaus-
sian random walk in discrete time. 

We are particularly interested in the diffusion process 
with two absorbing bounds that correspond to the two 
choices. The diffusion process yields a decision when the 
value of evidence U(t) reaches a bound. Assume A and –B 
correspond to the evidence sufficient to trigger behavioral 
responses Ra and Rb, respectively, where A and B are both 
positively valued. Formally, the decision rule is 

if ( ) ,  then continue sampling,

if ( ) ,  then respond ,

if ( ) ,  then respond .

a

b

B U t A

U t A R

U t B R

) 7 7

8

9 )

 (A.4) 

The first result of interest is the probability of stopping 
at the upper bound A and its complement, the probability 
of stopping at the lower bound –B. Complete derivations 
of these probabilities along with considerable background 
theory can be found in several texts (e.g., Luce, 1986; Ross, 
1996). Here we summarize the relevant results. 

When " : 0, the probability that U(t) stops at the up-
per bound A is 

2

2

2

2 2

1B

a B A

eP
e e

" #

2" # ")

)
'

) #
. (A.5) 

When the drift rate is zero " = 0, the limiting expression is 

0
m a A B"; (

 (A.6) 
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One derivation of these expressions is based on Wald’s 
identity (see Luce, 1986; Wald, 1947).  

The second result of interest is the average time it  
takes to stop the process at one of the bounds. This  
conditional expected time can be compactly written  
using the hyperbolic cotangent, which is defined as coth(z) 
= (ez + e–z)/ (ez – e–z). For " : 0, the expected time for proc-
esses that stop at the upper bound A is  

2 2
( )coth coth .a

A B A B B BE T " "
" "# #
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When the drift rate is zero " = 0, the limiting expression is  

2
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For " : 0, the expected stopping time for processes that 
stop at the lower bound –B is 
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and for " = 0,  

2
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One way these expressions can be calculated is from mo-
ment generating functions for Ta and Tb derived by Smith 
(1990; Equations 11a and 11b). 

The stopping time for all processes, no matter which 
bound is reached, is denoted TD. For " : 0, this uncondi-
tional expected stopping time is given by the relatively sim-
ple expression: 

4 5 * +1 1D aE T AP B P
"
0' ) )1 .  (A.11) a -.

For " = 0, the limiting result is 

4 5 20
lim .Dµ

ABE T
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These expressions have been derived by several authors 
(e.g., Luce, 1986; Equation 8.20). 

Symmetric bounds on the diffusion process 
In our application, the two choices a and b are equally 

likely. We therefore focus our analysis on the special case 
where the absorbing bounds are equidistant from the start-
ing point. This assumption of symmetric bounds simplifies 
the expressions for the choice probabilities and stopping 
times. When A = B, the probability of stopping at the up-
per bound first becomes a logistic function. Specifically, 
Equation A.5 simplifies to  

22
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e " #)
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 (A.13) E T

B

This special case has been discussed in detail by Link 
(1992). 

When A = B, the expected time to either upper or 
lower bound is the same, E[TD] = E[Ta] = E[Tb]. Equation 
A.11 and A.12 simplify to  
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This expression uses the hyperbolic tangent function 
tanh(z) = (ez + e–z)/ (ez – e–z).  

Applying the diffusion process  
to response time 

We assume that the total response time TT  is the sum 
of random variables for decision time TD and residual time 
TR. The residual time is due to an additional set of proc-
esses that are unrelated to decision, such as sensation and 
motor execution. The residual time TR is assumed to be 
independent of the stimulus and decision variables and is 
also independent of the decision time TD (Luce, 1986). Like 
TD, the residual time TR is a random variable. The expected 
total response time is simply 

4 5 4 5 4 5T DE T E T E T' ( R . (A.15) 

The expected residual time E[TR] becomes one of the pa-
rameters of our primary version of the diffusion model. To 
simplify the notation, we let tR = E[TR]. 

Normalization of parameters 
The derivations thus far contain parameters for the 

bounds A and B, the drift rate ", and the diffusion coeffi-
cient #. For this application to response time, we can re-
duce the number of parameters by dividing all terms by #. 
This simplification is possible because evidence is unob-
servable and the parameters appear in the predictions as 
ratios. This normalization is similar to the definition in 
signal detection theory where d! is defined as a magnitude 
of a random variable relative to its standard deviation 
(Green & Swets, 1966). In addition, we further simplify  
the parameters by assuming that the diffusion coefficient  
is constant for all conditions. Accordingly, we define  
A!= A/ #, B! = B/#, "! = "/#. For symmetric bounds,  
A!= B!, Equation A.13, A.14, and A.15 become  
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The normalization is equivalent to scaling the units of evi-
dence to the standard deviation of the noise that would 
accumulate over a unit time. Related discussions of using 
the ratio of signal and noise parameters can be found in 
Smith (1995) and Balakrishnan, Busemeyer, MacDonald, 
and Lin (2003). 

Scaling of stimulus strength 
Stimulus strength x affects the rate at which evidence 

accrues. We assume that stimulus strength does not affect 
the values for the bounds or the mean residual time. In 
fact, we assume that these bounds are fixed for a block of 
trials, which consists of a random sequence of stimuli rep-
resenting a variety of stimulus strengths and the two alter-
natives. We represent the two alternative choices by the 
sign of x, and assume that positive and negative values shar-
ing identical magnitude represent equal levels of difficulty. 
We also assume that x is fixed for the duration of the trial. 
It gives rise to a rate of evidence accumulation "!.  

How does "! depend on x? The simplest scaling as-
sumption is that the normalized rate of accumulation is 
proportional to stimulus strength:  

( )µ x k! ' x , (A.18) 

where k > 0. When the stimulus strength is zero, the deci-
sion is based on an accumulation of noise, "!(0) = 0.  

More generally, it is possible that the normalized rate of 
accumulation of evidence might depend on stimulus 
strength in a nonlinear fashion. We therefore consider 
power-function scaling:  

* +( ) sign( )µ x x k x
&

! '  (A.19) 1 e

where & > 0 (e.g., Pelli, 1987). 
In this study, we consider two versions of the diffusion 

model. In the proportional-rate diffusion model, we combine 
Equations A.16 and A.17 with the scaling Equation A.18. 
This model depends on only three parameters: A!, k, and tR. 
Specifically, the psychometric function Pa(x) for the prob-
ability of response Ra is 
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and the chronometric function tT(x) for the mean response 
time is 

* +
2

tanh for x 0
( ) .

for x 0

R
T

R

A A kx t
kxt x

A t

!C ! ( :B' D
B ! ( 'E

 (A.21) 

In the power-rate diffusion model, we combine Equations 
A.16 and A.17 with the more general scaling Equation 
A.19. This model has four parameters: A!, k, tR, and &. 

The relation between the chronometric and psycho-
metric functions are clarified by writing one in terms of the 

other. In particular, the chronometric function for the  
x : 0 case can be written  

( ) [2 ( ) 1]T a
At x P x t
kx R
!

' ) (  (A.22) 

(see Luce, 1986). This alternate expression for the mean 
time makes explicit that t the chronometric function is a 
simple modification of the psychometric function. Specifi-
cally, the logistic function Pa(x) is rescaled and multiplied 
by 1/x. The tanh function is a rescaling of the logistic func-
tion. 

Predicting probability correct 
Up to now, we have considered the probability of a 

particular response Ra. For typical psychophysical studies 
that avoid response bias, it is common to focus instead on 
the probability of a correct response. Here we derive the 
psychometric and chronometric functions for a correct  
response. When x is positive, stopping at the upper  
bound is the correct response, and it has probability  
Pa. When x is negative, stopping at the lower bound is the 
correct response, and it has probability 1 – Pa(x). The Pa  
function has an odd symmetry such that Pa(x) = 1 – Pa(–x). 
This antisymmetry is explicit for the function Pa(x) – 0.5 as 
seen in the equivalent expression [Pa(x) – .5]=–[Pa(–x) –.5]. 
Combining these observations, one can use the absolute 
value of x in Equation A.20 to transform Pa(x) to PC(x):  

2
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Next consider the predicted mean response time. The 
symmetric diffusion model predicts the same response time 
distributions for correct and error responses (e.g., Luce, 
1986). This is seen in the symmetry of Equation A.21:  
tT(x) = tT(–x). Thus, this equation can be adapted for either 
correct or error response time. There is no meaningful no-
tion of a correct response when x = 0, but the response 
time distribution is the same for either response. 

An alternative uncoupled model 
Whatever the mapping is between stimulus strength 

and rate of evidence accumulation, the central idea behind 
the diffusion model is that response time and accuracy are 
explained by a common process. This hypothesis has a vari-
ety of alternatives. However, these alternatives are likely to 
have one feature in common. They predict that the effect 
of stimulus strength on response time and accuracy cannot 
be explained by a common variable. To evaluate this class 
of alternatives, we generalized the diffusion to model so 
that "! is scaled differently for response time and accuracy. 
We use this uncoupled model as a tool to estimate the 
threshold ratio.  
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Definition 
Under the proportional rate scaling assumption, we de-

fine one normalized drift rate parameter for probability 
correct "!P and a second for expected response time "!T, 

  and  P P T Tµ k x µ k x! !' ' . (A.24) 

Under the power-rate scaling assumption, we define them 
as 

* + * +sign( )  and sign( ) .P P T Tµ x k x µ x k x
& &

! !' '  (A.25) 

We emphasize this use of separate scaling parameters for 
choice and time is not consistent with the diffusion model. 
Rather, it is a tool for evaluating the diffusion model. 
When distinct scaling parameters improve the fit of the 
uncoupled model relative to the diffusion model, it is evi-
dence against the diffusion model. 

Threshold predictions 
For the psychometric function, define a threshold FP  

as the strength value that corresponds to 75% correct, that 
is halfway between the worst and best possible perform-
ance, based on the best-fit psychometric function: 

* + 0.75C PP F ' . (A.26) 

The accuracy threshold FP can be derived from the k and 
A! parameters using Equation A.23 with the probability 
correct set to a criterion value of 0.75 and x set to positively 
valued FP: 

2
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Solving for FP yields 

ln(1/ 0.75 1)
2P kA

F )
'
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, (A.28) 

which is approximately equal to 0.549/(kA!).   
For the chronometric function, define an analogous 

threshold FT as the strength value that corresponds to the 
response time that is halfway between the slowest and fast-
est possible mean response time: 
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The threshold FT can be derived from the k and A! parame-
ters using Equation A.21 with the expected time set to the 
criterion value of t

  R ( 2
1 !A 2  and x set to positively valued 

FT: 
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This expression simplifies to 

1 tanh( ).
2 TA k A kF! !' TF  (A.31) 

Substituting z = A!kFT/2 yields the expression z = tanh(2z) 
This expression can be solved numerically for a positive z 
that is approximately equal to 0.958. Substituting this con-
stant into Equation A.31 and solving for FT yields 

1.915 /( )T .A kF !J  (A.32) 

The threshold ratio 
For the symmetric diffusion model, the predicted ratio 

of the chronometric threshold to the psychometric thresh-
old is approximately 3.49. For purposes of this article, we 
round this prediction to 3.5. This is true for both propor-
tional-rate and power-rate scaling. In the uncoupled model 
with kP : kT, the threshold ratio may take on any value. The 
uncoupled model allows one to estimate the threshold ratio 
exhibited by the data and compare it to predictions of the 
diffusion and other models. 

An alternative independent sampling model 
To illustrate the potential usefulness of the threshold 

ratio prediction, we briefly describe an alternative model 
that predicts a threshold ratio different than 3.5. Inde-
pendent sampling models are of interest because they mod-
ify a central assumption of the diffusion model. Rather 
than the decision being based on the additive accumulation 
of information, it is based on each momentary sample of 
evidence. If any sample exceeds the decision bound, a re-
sponse is triggered. A detailed treatment of such a model 
for detection can be found in Maloney and Wandell 
(1984). Here we consider an analogous model for discrimi-
nation. 

A further restriction is placed on the model for pur-
poses of this example. Consider a “high threshold” version 
of independent sampling where noise alone never yields a 
false alarm. Instead, errors arise from a competing guessing 
process. This high threshold assumption was also employed 
by Maloney and Wandell (1984) and makes this model 
relatively simple to analyze. In particular, one can show that 
the psychometric and chronometric functions have congru-
ent shapes and thus have a threshold ratio of 1.0. There-
fore, this version of the independent sampling model can 
be easily distinguished from the diffusion model using the 
threshold ratio. 

Variability predictions 
Predictions of the variability of the response time are 

used to calculate the maximum likelihood fit. Because of 
the assumed additively of decision and residual time, the 
variability of the total response time is simply 

R( ) = VAR( ) + VAR( ). T DT T RT  (A.33) 
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For the symmetric diffusion model, the variance of the 
response time to either bound can be solved using the 
moment generating function derived by Cox and Miller 
(1965, Equation 128). The predicted variance of the re-
sponse time for " : 0 is  
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VAR( )  

 [  tanh( ) - sech( ) ] +VAR( ).

T
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This expression uses the hyperbolic secant: sech(z) =  
2/(ez + e–z). For "! = 0, the limiting expression is 

4
0

2lim VAR( )   VAR( ).
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Refinements for large values of stimulus strength 
The experiments in this study are unusual in visual 

psychophysics in that they measure performance at stimu-
lus strengths that are many times the value that yields per-
fect accuracy. For example, we measure performance at mo-
tion coherences of 0% to 100% in some experiments where 

3% is the accuracy threshold and 10% yields almost perfect 
performance. For the predicted decision time and the pro-
portion correct, as stimulus strength increases, the uncer-
tainty of the predictions approach zero. For such extreme 
conditions, small deviations between the predicted and 
observed values can have a large effect on the maximum 
likelihood estimates. To prevent an overemphasis on the 
extreme conditions, we modified the model in two ways to 
make it more realistic. One modification is to fix the resid-
ual time variance so that 4 5VAR( ) 0.1R RT E T ' . In other 
words, the predicted coefficient of variability of the residual 
time is fixed to be a constant small value to prevent the 
predicted overall variance from approaching zero. The 
other modification is to add a small lapse probability to the 
model. Specifically, the predicted probability correct is a 
mixture of the prediction given above and unbiased guess-
ing between the two responses. For all analyses in this arti-
cle, the lapse probability is fixed at .005. This small prob-
ability of a lapse has no appreciable effect on the model fits 
except for the few instances with errors at high stimulus 
strengths. For those cases, allowing lapses greatly improves 
the fit of the model. 

 
a, b  possible choices 
A, B bound parameters 
A!, B!  normalized bound parameters 
FT, FP halfway thresholds for time and probability correct, respectively 
& exponent parameter for the power function scaling  
6t change in time for discrete time approximation 
6U random variable for the momentary evidence in the discrete time approximation 
i time step index in the discrete time approximation 
k sensitivity parameter for stimulus strength 
kT , kP  sensitivity parameters in the uncoupled model for time and accuracy 
" drift rate parameter 
"! normalized drift rate parameter 
"!T, "!P normalized drift rate parameters in the uncoupled model for time and accuracy 
n number of time steps in the discrete time approximation 
Pa, Pb predicted probability of a response Ra and response Rb, respectively 
PC predicted probability of a correct response 
Ra, Rb possible responses 
Sa, Sb stimulus categories 
# diffusion coefficient parameter 
t time 
tR mean residual time parameter 
tT predicted mean total response time 
Ta, Tb random variables for the expected time conditional on stopping at bound A or B 
TD random variable representing decision time (unconditional on bound) 
TR random variable representing residual time 
TT random variable representing total response time 
U(t) random variable representing the accumulated evidence at time t 
x stimulus strength variable 

Table A1. Summary of notations used in the Appendix. 

 



Journal of Vision (2005) 5, 376-404 Palmer, Huk, & Shadlen 401 

Acknowledgments 
For helpful comments and sharp criticisms, we thank 

Jochen Ditterich, Joshua Gold, Stephen Link, Geoff Loftus, 
Mark Mazurek, Roger Ratcliff, Jamie Roitman, Philip 
Smith, Zelda Zabinsky, and an anonymous reviewer. This 
work was supported by Howard Hughes Medical Institute 
and National Institutes of Health Grants RR00166 and 
EY11378. 

 
Commercial relationships: none. 
Corresponding author: John Palmer. 
Email: jpalmer@u.washington.edu. 
Address: Department of Psychology, Box 351525, Univer-
sity of Washington, Seattle WA 98115. 

References 
Albright, T. D. (1984). Direction and orientation selectivity 

of neurons in visual area MT of the macaque. Journal 
of Neurophysiology, 52, 1106-1130. [PubMed] 

Balakrishnan, J. D., Busemeyer, J. R., MacDonald, J. A., & 
Lin, A. (2003). Dynamic signal detection theory: The next 
logical step in the evolution of signal detection analysis. Un-
published manuscript.  

Barlow, H. B. (1958). Temporal and spatial summation in 
human vision at different background intensities. 
Journal of Physiology, 141, 337-350. [PubMed] 

Bonnet, C., & Dresp, B. (2001). Reaction time studies of 
sensory magnitude and perceptual processing. Psy-
chologica, 28, 63-86.  

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial 
Vision, 10, 443-446. [PubMed] 

Britten, K. H., Shadlen, M. N., Newsome, W. T., & 
Movshon, J. A. (1992). The analysis of visual motion: 
A comparison of neuronal and psychophysical per-
formance. Journal of Neuroscience, 12, 4745-4765. 
[PubMed] 

Britten, K. H., Shadlen, M. N., Newsome, W. T., & 
Movshon, J. A. (1993). Responses of neurons in ma-
caque MT to stochastic motion signals. Visual Neuro-
science, 10, 1157-1169. [PubMed] 

Burbeck, S. L., & Luce, R. D. (1982). Evidence from audi-
tory simple reaction times for both change and level 
detectors. Perception & Psychophysics, 32, 117-133. 
[PubMed] 

Burkhardt, D. A., Gottesman, J., & Keenan, R. M. (1987). 
Sensory latency and reaction time: Dependence on 
contrast polarity and early linearity in human vision. 
Journal of the Optical Society of America A, 4, 530-539. 
[PubMed] 

Burr, D. C., & Santoro, L. (2001). Temporal integration of 
optic flow, measured by contrast and coherence 
thresholds. Vision Research, 41, 1891-1899. [PubMed] 

Busemeyer, J. R., & Townsend, J. T. (1993). Decision field 
theory: A dynamic-cognitive approach to decision 
making in an uncertain environment. Psychological Re-
view, 100, 432-459. [PubMed] 

Cornelissen, F., Peters, E., & Palmer, J. (2002). The Eye-
Link toolbox: Eye tracking with MATLAB and the 
psychophysics toolbox. Behavior Research Methods, In-
struments & Computers, 34, 613-617. [PubMed] 

Cox, D. R., & Miller, H. D. (1965). The theory of stochastic 
processes. New York: Chapman & Hall.  

Ditterich, J., Mazurek, M. E., Roitman, J. D., Palmer, J., & 
Shadlen, M. N. (2001). A computational model of the 
speed and accuracy of motion discrimination. Society of 
Neuroscience Abstracts, 27, Program No. 58.12.  

Donders, F. C. (1969). On the speed of mental processes. 
Translated by W. G. Koster in Acta Psychologica, 30, 
412-431. [PubMed] 

Dubner, R., & Zeki, S. M. (1971). Response properties and 
receptive fields of cells in an anatomically defined re-
gion of the superior temporal sulcus. Brain Research, 
35, 528-532. [PubMed] 

Eckstein, M. P. (1994). Models for human visual signal detec-
tion in spatiotemporal noise. Unpublished doctoral dis-
sertation, University of California, Los Angeles, CA.  

Eckstein, M. P., & Whiting, J. S. (1996). Visual signal de-
tection in structured backgrounds. I. Effect of number 
of possible spatial locations and signal contrast. Journal 
of the Optical Society of America A, 13, 1777-1787. 
[PubMed] 

Foley, J. M., & Legge, G. E. (1981). Contrast detection and 
near-threshold discrimination in human vision. Vision 
Research, 21, 1041-1053. [PubMed] 

Gold, J. I., & Shadlen, M. N. (2000). Representation of a 
perceptual decision in developing oculomotor com-
mands. Nature, 404(6776), 390-394. [PubMed] 

Gold, J. I., & Shadlen, M. N. (2001). Neural computations 
that underlie decisions about sensory stimuli. Trends in 
Cognitive Science, 5, 10-16. [PubMed] 

Gold, J. I., & Shadlen, M. N. (2003). The influence of be-
havioral context on the representation of a perceptual 
decision in developing oculomotor commands. Journal 
of Neuroscience, 23, 632-651. [PubMed] 

Green, D. M., Smith, A. F., & von Gierke, S. M. (1983). 
Choice reaction time with a random foreperiod. Per-
ception & Psychophysics, 34, 195-208. [PubMed] 

Green, D. M., & Swets, J. A. (1966). Signal detection theory 
and psychophysics. New York: John Wiley & Sons, Inc. 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=6646960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=6520628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=13539843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9176952
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1464765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8257671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7145582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=3572580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11412882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8356185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12564564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=5811531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=5002708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8776892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7314485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10746726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11164731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12533623


Journal of Vision (2005) 5, 376-404 Palmer, Huk, & Shadlen 402 

Hanes, D. P., & Schall, J. D. (1996). Neural control of vol-
untary movement initiation. Science, 274, 427-430. 
[PubMed] 

Hoel, P. G., Port, S. C., & Stone, C. J. (1971). Introduction 
to statistical theory. Boston: Houghton Mifflin. 

Hohnsbein, J., & Mateeff, S. (1992). The relation between 
the velocity of visual motion and the reaction time to 
motion onset and offset. Vision Research, 32, 1789-
1791. [PubMed] 

Horwitz, G. D., & Newsome, W. T. (2001a). Target selec-
tion for saccadic eye movements: Direction-selective 
visual responses in the superior colliculus. Journal of 
Neurophysiology, 86(5), 2527-2542. [PubMed] 

Horwitz, G. D., & Newsome, W. T. (2001b). Target selec-
tion for saccadic eye movements: Prelude activity in 
the superior colliculus during a direction-
discrimination task. Journal of Neurophysiology, 86(5), 
2543-2558. [PubMed] 

Huk, A. C., & Heeger, D. J. (2002). Pattern-motion re-
sponses in human visual cortex. Nature Neuroscience, 
5(1), 72-75. [PubMed]  

Huk, A. C., & Shadlen, M. N. (2004). A neural integrator 
underlying perceptual decision-making in macaque pa-
rietal cortext. 2004 Abstract Viewer/Itinerary Planner 
(Program No. 20.10). Washington, DC: Society for 
Neuroscience. 

Karlin, S., & Taylor, H. M. (1975). A first course in stochastic 
processes (2nd ed.). New York: Academic Press. 

Kellogg, W. M. (1931). The time of judgment in psycho-
metric measures. American Journal of Psychology, 43, 65-
86.  

Kim, J. -N., & Shadlen, M. N. (1999). Neural correlates of a 
decision in the dorsolateral prefrontal cortex of the 
macaque. Nature Neuroscience, 2(2), 176-185. [PubMed] 

Klein, S. A. (2001). Measuring, estimating, and understand-
ing the psychometric function: A commentary. Percep-
tion & Psychophysics, 63, 1421-1455. [PubMed] 

Laming, D. (1986). Sensory analysis. New York: Academic 
Press.  

Laming, D. R. J. (1968). Information theory of choice-reaction 
times. London: Academic Press. 

Legge, G. E., Kersten, D., & Burgess, A. W. (1987). Con-
trast discrimination in noise. Journal of the Optical Soci-
ety of America A, 4, 391-404. [PubMed] 

Leshowitz, B., Taub, H. B., & Raab, D. H. (1968). Visual 
detection of signals in the presence of continuous and 
pulsed backgrounds. Perception & Psychophysics, 4, 207-
213.  

Link, S. W. (1975). The relative judgment theory of two 
choice response time. Journal of Mathematical Psychol-
ogy, 12, 114-135.  

Link, S. W. (1978a). The relative judgment theory analysis 
of response time deadline experiments. In N. J. Castel-
lan, Jr., & F. Restle (Eds.), Cognitive theory (Vol. 3, pp. 
117-138). Hillsdale, NJ: Erlbaum. 

Link, S. W. (1978b). The relative judgment theory of the 
psychometric function. In J. Requin (Ed.), Attention & 
performance VII (pp. 619-630). Hillsdale NJ: Erlbaum.  

Link, S. W. (1992). The wave theory of difference and similarity. 
Hillsdale, NJ: Erlbaum.  

Link, S. W., & Heath, R. A. (1975). A sequential theory of 
psychological discrimination. Psychometrika, 40, 77-
105.  

Luce, R. D. (1986). Response times. New York: Oxford Uni-
versity Press. 

Macmillan, N. A., & Creelman, C. D. (2005). Detection 
theory: A user's guide (2nd ed.). Mahwah, NJ: Erlbaum. 

Maloney, L. T., & Wandell, B. A. (1984). A model of a 
single visual channel's response to weak test lights. Vi-
sion Research, 24, 633-640. [PubMed] 

Mansfield, R. J. W. (1973). Latency functions in human 
vision. Vision Research, 13, 2219-2234. [PubMed] 

Mazurek, M. E., Roitman, J. D., Ditterich, J., & Shadlen, 
M. N. (2003). A role for neural integrators in percep-
tual decision making. Cerebral Cortex, 13(11), 1257-
1269. [PubMed] 

Mazurek, M. E., & Shadlen, M. N. (2002). Limits to the 
temporal fidelity of cortical spike rate signals. Nature 
Neuroscience, 5(5), 463-471. [PubMed] 

Mordkoff, J. T., & Egeth, H. E. (1993). Response time and 
accuracy revisited: Converging support for the interac-
tive race model. Journal of Experimental Psychology: Hu-
man Perception and Performance, 19, 981-991. [PubMed] 

Morgan, M. J., & Ward, R. (1980). Conditions for motion 
flow in dynamic visual noise. Vision Research, 20, 431-
435. [PubMed] 

Nachmias, J., & Kocher, E. C. (1970). Visual detection and 
discrimination of luminance increments. Journal of the 
Optical Society of America A, 60, 382-389. [PubMed] 

Newsome, W. T., Britten, K. H., Movshon, J. A., & 
Shadlen, M. (1989). Single neurons and the percep-
tion of visual motion. In D. M. -K. Lam & C. D. Gil-
bert (Eds.), Neural mechanisms of visual perception: Pro-
ceedings of the retina research foundation (Vol. 2, pp. 171-
198). Woodlands, TX: Portfolio Publishing Company. 

Palmer, J. (1998). Attentional effects in visual search: Relat-
ing search accuracy and time. In R. D. Wright (Ed.), 
Visual attention. New York: Oxford University Press. 

Pelli, D. G. (1987). On the relation between summation 
and facilitation. Vision Research, 27, 119-123. 
[PubMed] 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=3617542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8832893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1455751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11698540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11698541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11731801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10195203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11800466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=6646960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=6464356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=4771191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14576217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11976706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8228847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7414977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=5437483


Journal of Vision (2005) 5, 376-404 Palmer, Huk, & Shadlen 403 

Pelli, D. G. (1997). The VideoToolbox software for visual 
psychophysics: Transforming numbers into movies. 
Spatial Vision, 10(4), 437-442. [PubMed] 

Pike, A. R. (1971). The latencies of correct and incorrect 
responses in discrimination and detection tasks: Their 
interpretation in terms of a model based on simple 
counting. Perception & Psychophysics, 9, 455-460.  

Pins, D., & Bonnet, C. (1996). On the relation between 
stimulus intensity and processing time: Piéron's law 
and choice reaction time. Perception & Psychophysics, 
58, 390-400. [PubMed] 

Platt, M. L., & Glimcher, P. W. (1999). Neural correlates 
of decision variables in parietal cortex. Nature, 400, 
233-238. [PubMed] 

Quick, R. F. (1974). A vector-magnitude model of contrast 
detection. Kybernetik, 16, 65-67. [PubMed] 

Ratcliff, R. (1978). A theory of memory retrieval. Psychologi-
cal Review, 85, 59-108. 

Ratcliff, R. (1980). A note on modeling accumulation of 
information when the rate of accumulation changes 
over time. Journal of Mathematical Psychology, 21, 178-
184. 

Ratcliff, R. (2002). A diffusion model account of response 
time and accuracy in a brightness discrimination task: 
Fitting real data and failing to fit fake but plausible 
data. Psychonomics Bulletin and Review, 9(2), 278-291. 
[PubMed] 

Ratcliff, R., Cherian, A., & Segraves, M. (2003). A com-
parison of macaque behavior and superior colliculus 
neuronal activity to predictions from models of simple 
two-choice decisions. Journal of Neurophysiology, 90, 
1392-1407. [PubMed] 

Ratcliff, R., & Rouder, J. N. (1998). Modeling response 
times for two-choice decisions. Psychological Science, 9, 
347-356.  

Ratcliff, R., & Rouder, J. N. (2000). A diffusion model ac-
count of masking in two-choice letter identification. 
Journal of Experimental Psychology: Human Perception and 
Performance, 26(1), 127-140. [PubMed] 

Ratcliff, R., & Smith, P. L. (2004). A comparison of se-
quential sampling models for two-choice reaction 
time. Psychological Review, 111, 333-367. [PubMed] 

Ratcliff, R., van Zandt, T., & McKoon, G. (1999). Connec-
tionist and diffusion models of reaction time. Psycho-
logical Review, 106, 261-300. [PubMed] 

Reddi, B. A., Asrress, K. N., & Carpenter, R. H. (2003). 
Accuracy, information, and response time in a sac-
cadic decision task. Journal of Neurophysiology, 90, 3538-
3546. [PubMed] 

Rees, G., Friston, K., & Koch, C. (2000). A direct quantita-
tive relationship between the functional properties of 
human and macaque V5. Nature Neuroscience, 3(7), 
716-723. [PubMed] 

Roitman, J. D., & Shadlen, M. N. (2002). Response of 
neurons in the lateral intraparietal area during a com-
bined visual discrimination reaction time task. Journal 
of Neuroscience, 22(21), 9475-9489. [PubMed] 

Romo, R., & Salinas, E. (2003). Flutter discrimination: 
Neural codes, perception, memory and decision mak-
ing. Nature Review Neuroscience, 4, 203-218. [PubMed] 

Ross, S. M. (1996). Stochastic processes (2nd ed.). New York: 
Wiley. 

Ruthruff, E. (1996). A test of the deadline model of speed-
accuracy tradeoffs. Perception & Psychophysics, 58, 56-64. 
[PubMed] 

Santee, J. L., & Egeth, H. E. (1982). Do reaction time and 
accuracy measure the same aspects of letter recogni-
tion? Journal of Experimental Psychology: Human Percep-
tion and Performance, 8, 489-501. [PubMed] 

Schweickert, R., Dahn, C., & McGuigan, K. (1988). Inten-
sity and number of alternatives in hue identification: 
Piéron's law and choice reaction time. Perception & Psy-
chophysics, 44, 383-389. [PubMed] 

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of 
a perceptual decision in the parietal cortex (area LIP) 
of the rhesus monkey. Journal of Neurophysiology, 86(4), 
1916-1936. [PubMed] 

Simpson, W. A. (1994). Temporal summation of visual 
motion. Vision Research, 34, 2547-2559. [PubMed] 

Smith, P. L. (1990). A note on the distribution of response 
times for a random walk with Gaussian increments. 
Journal of Mathematical Psychology, 34, 445-459.  

Smith, P. L. (1994). Fechner's legacy and challenge: Review 
of The wave theory of difference and similarity. Journal of 
Mathematical Psychology, 38, 407-420.  

Smith, P. L. (1995). Psychophysically principled models of 
visual simple reaction time. Psychological Review, 
102(3), 567-593. 

Smith, P. L. (1998). Bloch's law predictions from diffusion 
process models of detection. Australian Journal of Psy-
chology, 50, 139-147.  

Smith, P. L. (2000). Stochastic dynamic models of response 
time and accuracy: A foundational primer. Journal of 
Mathematical Psychology, 44, 408-463. [PubMed] 

Smith, P. L., Ratcliff, R., & Wolfgang, B. J. (2004). Atten-
tion orienting and the time course of perceptual deci-
sions: Response time distributions with masked and 
unmasked displays. Vision Research, 44, 1297-1320. 
[PubMed] 

Smith, P. L., & Vickers, D. (1988). The accumulator model 
of two-choice discrimination. Journal of Mathematical 
Psychology, 32, 135-168.  

Stampe, D. (1993). Heuristic filtering and reliable calibra-
tion methods for video-based pupil-tracking systems. 
Behavior Research Methods, Instruments & Computers, 
25(2), 137-142.  

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15066392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9176953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8935900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10421364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=4453110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12120790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12761282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10696609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15065913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10378014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12815017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10862705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12417672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8668520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8668520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=3226887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11600651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7975294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10973778


Journal of Vision (2005) 5, 376-404 Palmer, Huk, & Shadlen 404 

Stone, M. (1960). Models for choice-reaction time. Psycho-
metrika, 25, 251-260.  

Tanner, W. P., Jr., & Swets, J. A. (1954). A decision-
making theory of visual detection. Psychological Review, 
61, 401-409. [PubMed] 

Usher, M., & McClelland, J. L. (2001). The time course of 
perceptual choice: The leaky, competing accumulator 
model. Psychological Review, 108, 550-592. [PubMed] 

van Wezel, R. J., & Britten, K. H. (2002). Multiple uses of 
visual motion: The case for stability in sensory cortex. 
Neuroscience, 111(4), 739-759. [PubMed] 

Wald, A. (1947). Sequential analysis. New York: Wiley. 

Wandell, B. A., Ahumada, P., & Welsh, D. (1984). Reac-
tion times to weak test lights. Vision Research, 24, 647-
652. [PubMed] 

Watamaniuk, S. N. J. (1993). Ideal observer for discrimina-
tion of the global direction of dynamic random-dot 
stimuli. Journal of the Optical Society of America A, 10, 
16-28. [PubMed] 

Watamaniuk, S. N. J., & Sekuler, R. (1992). Temporal and 
spatial integration in dynamic random-dot stimuli. Vi-
sion Research, 32, 2341-2347. [PubMed] 

Watson, A. B. (1979). Probability summation over time. 
Vision Research, 19, 515-522. [PubMed] 

Watson, J., Myers, R., Frackowiak, R., Hajnal, J., Woods, 
R., Mazziotta, J., et al. (1993). Area V5 of the human 
brain: Evidence from a combined study using positron 
emission tomography and magnetic resonance imag-
ing. Cerebral Cortex, 3(2), 79-94. [PubMed] 

Wickelgren, W. A. (1977). Speed-accuracy tradeoff and in-
formation processing dynamics. Acta Psychologica, 41, 
67-85. 

 
 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8490322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=13215690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11488378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12031402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=6464358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1288010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1288010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=483579


Errata for Palmer, Huk and Shadlen (2005) 

Published in Journal of Vision, 5, 376-404 

John Palmer 

Last updated 8/22/05 

 

Page 400, Equation A.34 has the first bracket in the wrong place.  It should be: 

 

VAR(TT ) =  

 !A  [tanh( !A !µ ) - !A !µ sech( !A !µ )
2

]

!µ
3

+VAR(TR ).
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