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Introduction 

The irregular pattern of  neural discharge has captured 
the interest and imagination of  neuroscientists since 
Lord Adrian [1]. To comprehend the nature of  informa- 
tion transmission in cerebral cortex, we must determine 
whether constellations of  action potentials - -  their inter- 
vals, coincidences, and precise timing relationships - -  
convey information or whether they arise capriciously. 
Do specific conditions cause the neuron to spike in 
one millisecond and not another, or are such variations 
the random instantiations of  a desired discharge rate? Do 
synchronized spikes from two neurons encode the pre- 
cise occurrence of  some event, or do such spikes arise 
merely as manifestations of  shared connectivity, bearing 
no special significance for information transmission? 

Whether  the irregular spike discharge from cortical neu- 
rons reflects noise or information clearly depends on 
the rules governing the conversion of  synaptic input to 
spike output. In our recent review for Current Opinion in 
Neurobiology [2], entitled 'Noise, neural codes and corti- 
cal organization', we suggested that cortical neurons fire 
irregularly because they are inundated with synaptic in- 
put [2]. Therefore, to achieve a graded, dynamic range of  
spike rates, the cortical neuron might balance excitation 
and inhibition. The statistics of  this process would lead 
to an irregular interspike interval, effectively randomiz- 
ing the spike output. If this is the case, then the precise 
pattern of  spikes from a neuron is no more likely to con- 
vey specific information than the pattern of  tea leaves at 
the bottom of  a cup. One can only infer whether the 
neural response, hke tea, is stronger or weaker. Likewise 
the cerebral cortex must be organized to transmit and 
detect rate changes through noisy elements, necessitat- 
ing redundancy and weak correlation. 

A contrasting viewpoint is presented in the preceding 
paper (see pp 239-247, in this issue), in which William 
Softky makes an interesting case for precise temporal 
signaling capacities in cortical neurons. Softky suggests 
that present knowledge of  synaptic integration does 
not preclude a precise temporal coding scheme, and 
he has constructed a hand-tuned neuronal model that 
could implement such a scheme. Softky's model incor- 
porates active dendritic conductances balanced by strong 
inhibition, together permitting only precise coincidences 
of  synaptic excitation to propagate from the dendrite to 

the axon hillock. Were this the case, the neuron could 
signal the occurrence of  certain combinations of  presy- 
naptic events with a temporal fidehty on the order of  a 
millisecond or less (i.e. well under the average interspike 
interval). An action potential arises only from synaptic 
activity in the preceding millisecond, whereas inputs that 
fail to produce a spike in the subsequent millisecond are 
effectively erased. This notion appears fanciful to us be- 
cause it extrapolates so far beyond existing data, but it 
remains a logical possibility, and we agree that it would 
permit the neuron to propagate a coincidence code. In 
fact, Softky's hand-tuned model is an excellent exam- 
ple of  the sort of  mechanism required of  any scheme in 
which downstream neurons attach significance to syn- 
chronous spikes [3-7]. 

The random walk model is a poor coincidence 
detector 

While fascinated by Softky's hand-tuned model, we 
strongly disagree with his inference that even a sim- 
ple integrate-and-fire mechanism can act as a precise 
coincidence detector when it balances excitation with 
inhibition. In such a model, the membrane voltage 
follows a random walk between resting potential and 
spike threshold. EPSPs drive the membrane toward spike 
threshold and IPSPs drive the membrane toward resting 
potential (Ec1). A crude version of  the model was il- 
lustrated in Figure lc o f  [2]. We cited many of  the 
originators of  this model, and its more sophisticated im- 
plementations, therefore, we will not reiterate this here. 
The model is somewhat counterintuitive because instead 
of  increasing neural discharge by adding excitation over 
inhibition, both excitation and inhibition are modulated 
together. The membrane voltage reaches spike thresh- 
old for the same reason that a particle in Brownian mo- 
tion ultimately diffuses out of  the one open window in 
a room. The rate of  spikes, like the rate of diffusion, de- 
pends on the frequency of  the steps and their relative 
size. Turning up the input spike rate is like adding heat 
to the room. The process allows the neuron to integrate 
a plethora of  synaptic inputs with reasonable time con- 
stant (7-20 ms) and yet to spike at a reasonable rate. We 
pointed out that the result of  the random walk is a nearly 
random interspike interval and suggested that the output 
spike train contains information in its rate only. 

Abbreviations 
EPSP---excitatory postsynaptic potential; IPSP---inhibitory postsynaptic potential. 
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Fig. 1 .  A random walk model of synaptic integration with balanced excitation and inhibition. (a) and (c) Raster representation of 300 exci- 
tatory inputs. Each row represents the spike train from a single neuron. The average input discharges 10 times in the 100ms epoch shown. 
( b )  Simulated membrane potential resulting from synaptic integration of the excitatory inputs in (a) and 1 SO inhibitory inputs (not shown). 
( d )  Simulated membrane potential from integration of the excitatory inputs in (c) and 1 5 0  inhibitory inputs. Spike trains in (a) and (c) are 
unrelated except where indicated by boxes. The box marked with an * in (a) identifies the set of inputs preceding the third spike in (b ) ,  
identified by the arrow• Identical inputs are shown in each of the boxes numbered 1-3 in (c), and are also provided at corresponding times 
in the inhibitory spike trains (not shown)• Notice that the same inputs fail to produce a spike at times marked 1 and 3, and produce a spike 
prematurely at 2 .  I t  w o u l d  b e  misleading to conclude that the third spike in (b) was caused by the inputs that immediately preceded it. (See 
text for a more detailed explanation•) 

In contrast, Softky suggests that the random walk model 
is, in fact, sensitive to the fine temporal structure of  its 
inputs and, moreover, that it performs a kind of  statis- 
tical coincidence-detection on its inputs. This conclu- 
sion is based largely on an analysis of  spike-triggered 
average EPSPs and IPSPs, shown in his Figure 1 (see 
pp 239-247,  in this issue). This analysis demonstrates 
simply that spikes arise just after EPSPs, and less probably 
aKer IPSPs. This point is obvious and was exphcitly in- 
corporated in the design of  the model. Softky's Figure 1 
simply restates that the random walk model is determin- 
istic; the process of  generating a spike does not include 
magic. This is hardly an argument for temporal precision 
or coincidence detection. Softky has confused the pre- 
cise deterministic mechanics of  the random walk with 
an illusory capacity for temporal encoding. 

For the issue of  temporal coding, the critical question is 
whether a postsynaptic spike indicates that some pattern 
of  inputs occurred within the preceding millisecond or 
two (i.e. a temporal regime well below the average in- 
terspike interval). At a minimum, we would expect the 
synaptic activity preceding a spike to cause another spike, 
if only we could replay these events to the neuron. In 
Softky's hand-tuned model, this must be so - -  nothing 
before the preceding millisecond affects the neuron. For 
the random walk, however, there is no guarantee that the 
synaptic activity preceding a given spike would cause an- 

other spike, were it to recur. This point is illustrated in 
Figure 1. 

We used the same simple random walk model portrayed 
in Figure lc of  [2] to produce lOOms worth of  spikes 
from 300 excitatory inputs (Fig. la). Each o f  these in- 
puts spikes at a nominal rate of  100 impulses per sec- 
ond and there are 150 inhibitory inputs (not shown) 
that would look indistinguishable• The membrane un- 
dergoes depolarization along a lattice of  voltages, from 
-70  mV to -55  inV. Each EPSP causes the membrane to 
depolarize by a twenty-fifth of  the necessary excursion 
to spike threshold, whereas each IPSP causes twice this 
amount of  hyperpolarization. There are no voltage de- 
pendencies outside the elastic barrier at - 70  mV, beyond 
which hyperpolarization is precluded. After a spike, the 
membrane resets to - 70  mV. As in our previous article 
[2], we do not intend this as a serious biophysical model. 
It is only a heuristic device. To reiterate, the parameters 
of  the model were chosen to allow the neuron to spike 
at a nominal rate that is similar to any one of  its inputs 
- -  that is, we use the random walk to achieve a proper 
dynamic range. 

Figure lb shows the simulated membrane voltage and 
spikes resulting from the bombardment of  input shown 
in Figure la. We identified the synaptic activity imme- 
diately preceding the third spike (arrow, Fig. lb). These 
events are shown in the box marked with an asterisk 
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in Figure la. According to Softky, these inputs caused 
the spike at the 16ms point (arrow, Fig. lb). This idea 
can be examined directly. We simply generated a new 
set o f  excitatory inputs (Fig. lc) and inhibitory inputs 
(not shown), and ran the same random walk algorithm 
to produce the spike output in Figure ld. At three times 
during the 100 ms epoch, we introduced the pattern of  
synaptic inputs we identified as causing the third spike 
in Figure lb. These are shown by the boxes marked 1 
through 3 in Figure lc. In each o f  these two millisec- 
ond epochs, we used the exact same excitatory and in- 
hibitory inputs that preceded the third spike in Figure lb. 
The result is rather disappointing for coincidence detec- 
tion. The first and third arrivals (boxes marked 1 and 
3; Fig. lc) produced no spike whatsoever. The second 
(box 2; Fig. lc) was associated with a spike, but it oc- 
curred too early (less than 0.1 ms into the two millisec- 
ond epoch). The arrival of  the first few EPSPs happened 
to drive the membrane to threshold. This spike cannot 
plausibly reflect the precise time of  inputs that we hypo- 
thesized were responsible for the third spike in Fig. lb. 
For purposes of  coincidence detection, this spike ought 
to reflect events falling in a millisecond window to the 
le~ of  box 2 in Figure lc. 
Using Monte Carlo methods, we confirmed that the 
synaptic activity immediately preceding a spike in the 
random walk model fails to produce a spike 70-80% of  
the time, were such activity to recur. Even this figure is 
overly generous, however, because it presumes no fluc- 
tuation in the amplitude of  an EPSP or IPSP. A more 
realistic model (with variation in the amplitude of  the 
postsynaptic potential) indicates that a spike is no more 
likely to occur after such identified causal input than by 
chance. Thus, were we to identify a group of  inputs that  
immediately precede any given spike (by 1-2 ms), repe- 
tition of  this exact pattern of  inputs would not guarantee 
another postsynaptic spike. 
For a coincidence code to propagate information, an ac- 
tion potential must indicate that a subset of  the neuron's 
inputs were active within the preceding millisecond or 
two. Proponents of  such a code do not require that the 
same inputs give rise to each and every spike - -  in fact, 
the notion that the neuron's spikes help to encode many 
different items of  information is touted as appealing. It 
is critical, however, that inputs which cause a spike, do 
so somewhat reliably; otherwise it would be impossible 
to decode the coincidences. As indicated in the preced- 
ing paragraph, the nearly random relationship between 
inputs and spikes would preclude reliable coding of  co- 
incident inputs. O f  course, an overwhelming excitatory 
barrage would lead invariably to a precisely timed spike, 
but it is wrong to conclude that the action potentials in 
Figure 1 reflect precise coincidences. They do not. 
As we stated in our earlier paper [2], a simple balance of  
excitation and inhibition (i.e. the random walk model) 
provides an adequate explanation for the irregularity of  
cortical spike discharge without appealing to coinci- 
dence detection. Due to other inputs on the neuron, 
almost any group of  inputs would exhibit nearly ran-  

dora correlation with postsynaptic spikes. This is in- 
tuitive. Whereas the exact bumps and wiggles of  the 
membrane voltage may reflect exact sequences and com- 
binations of  inputs, the spike output cannot possible con- 
vey such complexity. 

C o n c l u d i n g  r e m a r k s  

Whether cortical neurons express a noisy rate code or 
a precise temporal code - -  whether the interspike in- 
terval is a random instantiation of  the average synaptic 
activity or a time stamp for some specific occurrence of  
inputs - -  affects our conception of  cortical organization 
and information transmission. The information encod- 
ing properties of  a coincidence code are certainly appeal- 
ing. Synchronous spikes have been proposed to mediate 
information transmission [3], to store memories [8], to 
distinguish figure from ground [6], and even to ele- 
vate the representation of  visual data to consciousness 
[7]. By comparison, modulation o f  a noisy rate code 
seems rather dull. Yet, no evidence presently indicates 
that the cortex can propagate a code based on syn- 
chrony, and we do not find Softky's appeal to evolution 
compelling. As argued previously, a balance of  excitation 
and inhibition allows the neuron to maintain a reason- 
able dynamic range in the face of  massive synaptic input. 
We suppose that noisy interval statistics are a small price 
to pay for the computational power endowed by large 
numbers of  inputs. 
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